02.20.2020 - BID SET - NOT FOR CONSTRUCTION

GEOTECHNICAL ENGINEERING REPORT

FOR PROPOSED RELOCATABLE CLASSROOM BUILDINGS HUENEME HIGH SCHOOL 500 W. BARD STREET, OXNARD VENTURA COUNTY, CALIFORNIA

> PROJECT NO.: 303277-002 DECEMBER 12, 2019

PREPARED FOR OXNARD UNION HIGH SCHOOL DISTRICT ATTENTION: POUL HANSON

> BY EARTH SYSTEMS PACIFIC 1731-A WALTER STREET VENTURA, CALIFORNIA 93003

December 12, 2019 Oxnard Union High School District Attention: Poul Hanson 309 South K Street-Oxnard, CA 93030 Project: Proposed Relocatable Classroom Buildings Hueneme High School 500 W. Bard Street Oxnard, Ventura County, California Subject: Engineering Geology and Geotechnical Engineering Report

As authorized, Earth Systems Pacific (Earth Systems) has performed an engineering geology and geotechnical engineering study for proposed relocatable classroom buildings on the Hueneme High School campus located at 500 W. Bard Street, Oxnard of Ventura County, California. The accompanying Engineering Geology and Geotechnical Engineering Report presents the results of our subsurface exploration and laboratory testing programs, and our conclusions and recommendations pertaining to geotechnical aspects of project design. This report completes Phase 1 of the scope of services described within our Proposal No. VEN-19-07-011 dated July 17, 2019 (Revised August 12, 2019), and authorized by Requisition No. R20-01539 dated August 30, 2019.

We have appreciated the opportunity to be of service to you on this project. Please call if you have any questions, or if we can be of further service.

Respectfully submitted,

EARTH SYSTEMS PACIFIC PATRICK V. BOALES No. 1346 CERTIFIED ENGINEERING GEOLOGIST **GE 2823** Exp. 6-30-21 Anthony P. Mazzei Patrick V. Boales **Geotechnical Engineer** ECHNI **Engineering Geologist** OF CAL 12/19 Copies: 2 - Oxnard Union High School District (1 via US mail, 1 via email)

NAI

- 1 Irvine Carrillo, Flewelling-Moody (via email)
- 1 Project File

TABLE OF CONTENTS

INTRODUCTION	1
GEOLOGY	2
	2
SOIL CONDITIONS	5
ANALYSIS OF LIQUEFACTION POTENTIAL	6
GEOTECHNICAL CONCLUSIONS AND RECOMMENDATIONS	8
ADDITIONAL SERVICES	10
LIMITATIONS AND UNIFORMITY OF CONDITIONS	10
SITE-SPECIFIC BIBLIOGRAPHY	12
GENERAL BIBLIOGTAPHY	13

APPENDIX A

Vicinity Map
Regional Geologic Map (SCAMP)
Seismic Hazard Zones Map
Historical High Groundwater Map
Field Study
Site Plan
Logs of Borings
Boring Log Symbols
Unified Soil Classification System

APPENDIX B

Laboratory Testing Tabulated Laboratory Test Results Individual Laboratory Test Results

APPENDIX C

Table 18-I-D Minimum Foundation Design Table

TABLE OF CONTENTS (Continued)

APPENDIX D

Site Classification Calculation

Junce Construction Spectral Response Values Table Spectral Response Curves - NOT FOR CONSTRUCTION Fault Parameters SET 2020 - Dix F

APPENDIX E

Liquefaction and Dry Sand Seismic Settlement Analyses Lateral Spreading Analyses Results

INTRODUCTION

This report presents results of an Engineering Geology and Geotechnical Engineering study performed for seven (7) proposed modular classrooms that will be located in the southeast corner of the Hueneme High School campus located at 500 West Bard Road in the Oxnard, California (see Vicinity Map in Appendix A). It is our understanding that one of the proposed structures will be a 36-foot by 40-foot modular building, and the remaining six modular buildings will be 24-foot by 40-foot in plan dimensions. The buildings will be prefabricated structures with wood foundations sitting on asphalt pavement.

The sites of the proposed modular classroom buildings are currently covered with asphaltic concrete pavement. Because the sites are essentially level, grading is expected to be limited to preparing near-surface soils to support the new structures. No cut or fill slopes or retaining walls are expected to be incorporated into the grading concept.

PURPOSE AND SCOPE OF WORK

The purpose of the geotechnical study that led to this report was to analyze the geology and soil conditions of the site with respect to the proposed improvements. These conditions include potential geohazards, surface and subsurface soil types, expansion potential, settlement potential, bearing capacity, and the presence or absence of subsurface water. The scope of work included:

- 1. Reconnaissance of the site.
- 2. Reviewing geotechnical data presented in previous campus-specific geotechnical reports generated by Earth Systems in 2011 and 2019.
- 3. Drilling, sampling, and logging two (2) hollow-stem-auger borings (B-1 and B-2) to study soil and groundwater conditions.
- 4. Laboratory testing soil samples obtained from the subsurface exploration to determine their physical and engineering properties.
- 5. Consulting with owner representatives and design professionals.
- 6. Analyzing the geotechnical data obtained.
- 7. Preparing this report.

Contained in this report are:

- 1. Descriptions and results of field and laboratory tests that were performed for this study for the proposed relocatable classroom buildings.
- 2. Discussions pertaining to the local geologic, soil, and groundwater conditions.
- 3. Conclusions pertaining to geohazards that could affect the site.
- 4. Conclusions and recommendations pertaining to site grading and structural design. 02.20.2

GEOLOGY

The site lies within the Oxnard Plain, which in turn lies within the western Transverse Ranges geomorphic province. The Oxnard Plain and the Transverse Ranges are characterized by ongoing tectonic activity. In the vicinity of the subject site, Tertiary and Quaternary sediments have been folded and faulted along predominant east-west structural trends.

Although there are several faults located within the region, the nearest known surficial trace of a fault of significant activity, the Simi-Santa Rosa Fault, is located approximately 6.1 miles northeast of the subject site. The project area is not located within any of the "Fault Rupture Hazard Zones" that have been specified by the State of California (CDMG. 1972, Revised 1999).

The site is underlain by alluvial deltaic sediments consisting of loose to medium dense silty sands, fine to medium sands, and clayey sands.

The site is within one of the Liquefaction Hazard Zones designated by the California Geological Survey (CGS, 2002).

No landslides were observed to be located on or trending into the subject property during the field study, or during reviews of the referenced geologic literature.

SEISMICITY AND SEISMIC DESIGN

Although the site is not within a State-designated "fault rupture hazard zone", it is located in an active seismic region where large numbers of earthquakes are recorded each year. Historically, major earthquakes felt in the vicinity of the subject site have originated from faults outside the area. These include the December 21, 1812 "Santa Barbara Region" earthquake, that was

EARTH SYSTEMS

presumably centered in the Santa Barbara Channel, the 1857 Fort Tejon earthquake, the 1872 Owens Valley earthquake, and the 1952 Arvin-Tehachapi earthquake.

Southern Ventura County was mapped by the California Division of Mines and Geology in 1975 to delineate areas of varying predicted seismic response. The deltaic (alluvial) deposits that underlie the campus are mapped as having a probable maximum intensity of earthquake response of approximately IX on the Modified Mercalli Scale. Historically, the highest observed intensity of ground response has been VII in the Oxnard area (C.D.M.G., 1975).

For school projects, the 2016 California Building Code (CBC) specifies that peak ground acceleration for design purposes can be determined from a site-specific study taking into account soil amplification effects. The United States Geological Survey (USGS, 2009) has undertaken a probabilistic earthquake analyses that covers the continental United States. A reasonable site-specific spectral response curve may be developed from USGS Unified Hazard Tool web page, which adjusts for site-specific ground factors. The interactive webpage appears to be a precise calculation based on site coordinates. The program incorporates the 2008 USGS/CGS working group consensus methodologies, and the output for base ground motion is a smooth curve based on seven spectral ordinates ranging from 0 to 2 seconds. The USGS interactive deaggregation spectral values are generally within about 5% of the precise site-specific values obtained from other programs such as OpenSHA or EZ-FRISK for the same model and attenuation relationships.

The NGA (Next Generation Attenuation) relationships for spectral response have been used in the analyses. A principal advantage in the NGA relationships is that the estimated site-specific soil velocity (Vs30) is used directly for site specific analysis rather than the NEHRP site corrections. The analysis also includes amplification factors (Idriss, 1993) to model the maximum rotated component of the ground motion.

Seismic design values are referenced to the Maximum Considered Earthquake (MCE) and, by definition, the MCE has a 2% probability of occurrence in a 50-year period. This equates to a return rate of 2,475 years. Spectral acceleration parameters that are applicable to seismic design are presented in Appendix C. It should be noted that the school project carries a seismic importance factor I of 1.25 and that factor has been incorporated into the 2013 and 2016 California Building Code response spectrums.

It is assumed that the 2016 CBC and ASCE 7-10 guidelines will apply for the seismic design parameters. The 2016 CBC includes several seismic design parameters that are influenced by the geographic site location with respect to active and potentially active faults, and with respect to subsurface soil or rock conditions. The seismic design parameters presented herein were determined by the U.S. Seismic Design Maps "risk-targeted" calculator on the USGS website for the jobsite coordinates (34.1595° North Latitude and -119.1809° West Longitude). The calculator adjusts for Soil Site Class D, and for Occupancy (Risk) Category III (for public school structures). (A listing of the calculated 2016 CBC and ASCE 7-10 Seismic Parameters is presented below and in Appendix C.)

Site Class (Table 20.3-1 of ASCE 7-10 with 2016 update)	D
Occupancy (Risk) Category	III
Seismic Design Category	E
Maximum Considered Earthquake (MCE) Ground Motion	
Spectral Response Acceleration, Short Period – S _s	2.264 g
Spectral Response Acceleration at 1 sec. – S ₁	0.804 g
Site Coefficient – F _a	1.00
Site Coefficient – F _v	1.50
Site-Modified Spectral Response Acceleration, Short Period – S_{MS}	2.264 g
Site-Modified Spectral Response Acceleration at 1 sec. – S_{M1}	1.205 g
Design Earthquake Ground Motion	
Short Period Spectral Response – S _{DS}	1.509 g
One Second Spectral Response – S _{D1}	0.804 g
Site Modified Peak Ground Acceleration - PGA _M	0.849 g
Note: Values Appropriate for a 2% Probability of Exceedance in 50 Years	

Summary of Seismic Parameters – 2016 CBC

Because the Seismic Design Category is "E" and S1 is greater than 0.75 g, a site-specific seismic analysis must be performed in addition to the "general procedure". For the Site-Specific Analysis, the Short Period Spectral Response (S_{DS}) was found to be 1.207 g, and the 1 Second Spectral Response (S_{D1}) was found to be 0.963 g. Both the "site specific" and "general procedure yielded peak ground accelerations of 0.849 g.

The Fault Parameters table in Appendix C lists the significant "active" and "potentially active" faults within a radius of about 37 miles from the subject site. The distance between the site and the nearest portion of each fault is shown, as well as the respective estimated maximum earthquake magnitudes, and the deterministic mean site peak ground accelerations.

Based on the exploratory borings drilled for this study, the near-surface soils in the area of the proposed relocatable classroom buildings consist of silty sands and sandy silts. A 5-foot thick layer of silty clay was encountered in Boring B-1 at a depth of approximately 22 feet below the existing ground surface. The clay layer was underlain by interbedded, discontinuous strata of silty sands, sandy clays and sandy to clayey silts to the maximum depth explored of 51.5 feet below the existing ground surface.

Testing indicates that anticipated bearing soils lie in the "low" expansion range of Table 1809.7 because the expansion index was found to be 38. [A locally adopted version of this classification of soil expansion is included in Appendix B of this report.] It appears that soils can be cut by normal grading and/or drilling equipment.

Groundwater was encountered at a depth of approximately 7 feet in Boring B-1 drilled for this study. Mapping of historically high groundwater levels by the California Geological Survey (CGS, 2002a) indicates that groundwater has been 10 feet below the ground surface near the subject site.

Samples of near-surface soils were tested for pH, resistivity, soluble sulfates, and soluble chlorides. The test results provided in Appendix B should be distributed to the design team for their interpretations pertaining to the corrosivity or reactivity of various construction materials (such as concrete and piping) with the soils. It should be noted that sulfate contents (1,900 mg/Kg) are in the "S1" ("negligible") exposure class of Table 19.3.1.1 of ACI 318-14; therefore, it appears that special concrete designs will be necessary for the measured sulfate contents. In accordance with Table 19.3.2.1 of ACI 318-14, the concrete should have Type II Portland cement, a maximum water-cement ratio of 0.50, and a 28-day compressive strength of 4,000 psi.

Based on criteria established by the County of Los Angeles (2013), measurements of resistivity of near-surface soils (810 ohms-cm) indicate that they are "severely corrosive" to ferrous metal (i.e. cast iron, etc.) pipes.

ANALYSIS OF LIQUEFACTION POTENTIAL

As mentioned previously, the campus is located within one of the Liquefaction Hazard Zones designated by CGS (2002b).

Earthquake-induced vibrations can be the cause of several significant phenomena, including liquefaction in fine sands and silty sands. Liquefaction results in a loss of strength and can cause structures to settle or even overturn if it occurs in the bearing zone. Liquefaction is typically limited to the upper 50 feet of soils underlying a site.

Fine sands and silty sands that are poorly graded and lie below the groundwater table are the soils most susceptible to liquefaction. Soils that have I_c values greater than 2.6, soils with plasticity indices greater than 7, sufficiently dense soils, and/or soils located above the groundwater table are not generally susceptible to liquefaction.

An examination of the conditions existing at the site, in relation to the criteria listed above, indicates the following:

- Groundwater was encountered at a depth of approximately 7 feet in Boring B-1 drilled for this study. Mapping of historically high groundwater levels by the California Geological Survey (CGS, 2002a) indicates that groundwater has been 10 feet below the ground surface near the subject site. For the liquefaction analyses, a groundwater depth of 7 feet below the ground surface was used.
- 2. The soil profile consists of interbedded stratum of non-plastic sands, silts and clays to the maximum depth explored.
- 3. Standard penetration tests conducted in the borings indicate that soils within the tested depth are in a variably dense state.

Based on the above, cyclic mobility analyses were undertaken to analyze the liquefaction and seismic-induced settlement potentials of the various soil layers. The liquefaction analyses were performed in general accordance with the methods proposed by NCEER (1997). In the analyses, the design earthquake was considered to be a 7.4 moment magnitude event, and a site adjusted peak ground acceleration of 0.849 g was assumed, as per the discussion in the "Seismicity and Seismic Design" section of this report. Soil stratigraphic and engineering data interpreted from Boring B-1 were utilized. Groundwater was assumed to be at a depth of 7 feet below the ground surface.

The analysis with the groundwater level at 7 feet indicated that layers totaling about 11 feet in thickness had factors of safety that were less than 1.3, with the shallowest layer between the depths of 7 and 10 feet (see Appendix D for calculations) below the ground surface. Those zones with factors of safety less than 1.3 are considered potentially liquefiable (C.G.S., 2008, and SCEC, 1999).

The volumetric strain for the potentially liquefiable zones was estimated using a chart derived by Tokimatsu and Seed (1987) after reducing the N₁60 values by the calculated "FC Delta" value, then making adjustments for fines content as per Seed (1987) and SCEC (1999). Using this methodology, the volumetric strain was found to be approximately 2.1 inches.

According to a chart derived by Ishihara (National Academy Press, 1985), "ground" damage would be expected related to the potentially liquefiable zones identified in the borings because of the 7-foot thickness of non-liquefiable soils above the 3-foot thick shallowest potentially liquefiable layer. The construction of a geogrid-reinforced mat beneath the proposed relocatable classroom buildings will mitigate the potential for ground damage at the site. (Examples of ground damage are sand boils and ground cracks.)

Although the construction of a geogrid-reinforced mat beneath the proposed relocatable classroom buildings will mitigate the potential for ground damage, there is a potential for differential areal settlement suggested by the findings. As mentioned previously, the combined liquefaction and seismic-induced settlements could potentially range up to about 2.0 inches depending on groundwater depth. According to SCEC (1999), up to about half of the total settlement could be realized as differential settlement. As a result, differential settlement could range up to about 1.1 inch at the ground surface.

EARTH SYSTEMS

"Free face" lateral spreading does not appear to pose a potential hazard because there are no nearby sloped areas or canyons (Bartlett and Youd, 1995). "Ground slope" lateral spreading, sometimes referred to as "ground oscillation", can occur when adjusted blow counts ($N_{1(60)}$) measured within potentially liquefiable zones are less than 15, which is true for a 2-foot thick potentially liquefiable zone between the depths of 35 and 37 feet below the ground surface. The cumulative thickness of this layer is about 0.9 meter. The potential ground oscillation was analyzed in accordance with procedures developed by Youd, Hansen and Bartlett (2002). In the analyses, it was assumed that the surface slope was 0.29%, which is equivalent to about 5 feet of fall in 1,700 feet, as shown on the Oxnard Quadrangle near the subject site. Fine contents were assumed to be 20% based on the soil type within this zone. The cumulative displacement was calculated to be about 0.4 feet, if all of the potentially liquefiable zones were to liquefy. (Calculations are included within Appendix E of this report.)

Based on the above, it is the opinion of this firm that a potential for liquefaction and lateral spreading exists at the proposed bathroom site.

GEOTECHNICAL CONCLUSIONS AND RECOMMENDATIONS

As noted above, there is a potential for liquefaction to produce differential settlements in the proposed building areas. Without mitigation, the currently proposed wood foundations may not be structurally capable of withstanding anticipated differential settlements of approximately 2.1 inches. The following remedial recommendations are intended to reduce potential differential settlement to a level where the proposed modular classroom buildings could be supported by wood foundations on asphalt pavement.

To mitigate the anticipated liquefaction-related effects, Earth Systems recommends that a geogrid reinforced mat be constructed beneath the relocatable buildings. The intent of the geogrid reinforced mat is to stiffen underlying soils so that they act as a block that would result in more uniform settlement beneath the structures.

To create the geogrid reinforced mats, native soils beneath the proposed buildings should be excavated a minimum of 5 feet below existing grade. The limits of overexcavation should be extended laterally to a distance of at least 5 feet beyond the outside edges of the foundation element wherever no existing structures are located within 10 feet of the outside edge of the overexcavation zone. If existing structures are within 10 feet of the lateral overexcavation limit, the overexcavation width may be reduced to 3 feet outside the building perimeter in that direction only. The bases of the overexcavation zones should be relatively level.

The bottoms of the remedial excavations should be scarified to a depth of 6 inches, uniformly moisture conditioned to above optimum moisture content; and compacted to achieve a relative compaction of at least 90 percent of the ASTM D 1557 maximum dry density. Following compaction of the bottom, a layer of geogrid should be placed on the prepared subgrade that extends across the entire area of overexcavation and up the sidewalls of the remedial excavation. The reinforcing geogrids should consist of Tensar Tri-Axial TX7, or equivalent as approved by the Geotechnical Engineer. Where more than one geogrid roll is required, the rolls should be overlapped at least 3 feet. A 1-foot layer of one-inch minus aggregate base material should be placed and compacted over the bottom layer of geogrid. The aggregate base material should be uniformly moisture conditioned to at or above optimum moisture content and compacted to achieve a relative compaction of at least 95 percent of the ASTM D 1557 maximum dry density. A second layer of geogrid should be placed over the compacted aggregate base material, and an additional foot of aggregate base material should be placed and compacted on top of the second geogrid layer. The second layer of geogrid rolls should be overlapped by 3 feet where necessary, and extend across the entire excavation; however, it does not need to extend up the sidewalls. Once the second lift of aggregate base material has been placed and compacted, the remedial excavation may then be brought up to finished subgrade elevation using the excavated soil compacted to at least 95 percent of the ASTM D 1557 maximum dry density. Once the fill reaches 6 inches below finished subgrade elevation, the bottom layer of geogrid extending up the sidewall of the remedial excavation should be pulled down onto the compacted surface to create an 8-foot overlap. The remedial excavation may then be brought up to finished subgrade using the excavated soil compacted to at least 95 percent of the ASTM D 1557 maximum dry density. The area may then be paved to match the existing structural paving section.

The modular building manufacturer and installer may choose to increase the number of pipe anchors used to firmly secure the building into the geogrid reinforced mat and stiffen the wood foundation.

EARTH SYSTEMS

ADDITIONAL SERVICES

This report is based on the assumption that an adequate program of monitoring and testing will be performed by Earth Systems during construction to check compliance with the recommendations given in this report. The recommended tests and observations include, but are not necessarily limited to the following:

7 1. Review of the building and grading plans during the design phase of the project.

- 2. Observation and testing during site preparation, grading, placing of engineered fill, and foundation construction.
- 3. Consultation as required during construction.

LIMITATIONS AND UNIFORMITY OF CONDITIONS

The analysis and recommendations submitted in this report are based in part upon the data obtained from the borings and CPT soundings advanced on the site during earlier site studies. The nature and extent of variations between and beyond the borings and soundings may not become evident until construction. If variations then appear evident, it will be necessary to reevaluate the recommendations of this report.

The scope of services did not include any environmental assessment or investigation for the presence or absence of wetlands, hazardous or toxic materials in the soil, surface water, groundwater or air, on, below, or around this site. Any statements in this report or on the soil boring logs regarding odors noted, unusual or suspicious items or conditions observed, are strictly for the information of the client.

Findings of this report are valid as of this date; however, changes in conditions of a property can occur with passage of time whether they be due to natural processes or works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur whether they result from legislation or broadening of knowledge. Accordingly, findings of this report may be invalidated wholly or partially by changes outside the control of this firm. Therefore, this report is subject to review and should not be relied upon after a period of one year.

In the event that any changes in the nature, design, or location of the structure(s) and other improvements are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing.

This report is issued with the understanding that it is the responsibility of the Owner, or of his representative to ensure that the information and recommendations contained herein are called to the attention of the Architect and Engineers for the project and incorporated into the plan and that the necessary steps are taken to see that the Contractor and Subcontractors carry out such recommendations in the field.

As the Geotechnical Engineers for this project, Earth Systems has striven to provide services in accordance with generally accepted geotechnical engineering practices in this community at this time. No warranty or guarantee is expressed or implied. This report was prepared for the exclusive use of the Client for the purposes stated in this document for the referenced project only. No third party may use or rely on this report without express written authorization from Earth Systems for such use or reliance.

It is recommended that Earth Systems be provided the opportunity for a general review of final design and specifications in order that earthwork and foundation recommendations may be properly interpreted and implemented in the design and specifications. If Earth Systems is not accorded the privilege of making this recommended review, it can assume no responsibility for misinterpretation of the recommendations.

SITE-SPECIFIC BIBLIOGRAPHY

Earth Systems Southern California, January 29, 2010, Geotechnical Engineering Report for Proposed Visitor's Bleachers, Hueneme High School, 500 West Bard Road, Oxnard, California (Job No. VT-23434-03).

Earth Systems-Southern California, January 26, 2011, Engineering Geology and Geotechnical Engineering Report for Proposed Solar Array at Hueneme High School, 500 West Bard Road, Oxnard, California (Job No. VT-24513-01).

Earth Systems Southern California, November 14, 2011, Engineering Geology and Geotechnical Engineering Report for Proposed Aquatic Center at Hueneme High School, 500 West Bard Road, Oxnard, California (Job No. VT-24627-01).

Earth Systems Southern California, December 14, 2011, Addendum to Engineering Geology and Geotechnical Engineering Report for Proposed Aquatic Center at Hueneme High School, 500 West Bard Road, Oxnard, California (Job No. VT-24627-01).

Earth Systems Southern California, May 29, 2012, Addendum to Engineering Geology and Geotechnical Engineering Report for Proposed Solar Array in Northwestern Parking Lot, Hueneme High School, 500 West Bard Road, Oxnard, California (Job No. VT-24513-01).

Earth Systems Pacific, August 27, 2019, Geotechnical Engineering Report for Proposed Improvements to Athletic Fields at Hueneme High School, 500 West Bard Road, Oxnard, California (Job No. 303277-001).

GENERAL BIBLIOGRAPHY

American Concrete Institute (ACI), 2009, ACI 318-14. California Building Standards Commission, 2016, California Building Code, California Code of Regulations Title 24.

California Division of Mines and Geology (C.D.M.G.), 1972 (Revised 1999), Fault Rupture Hazard Zones in California, Special Publication 42.

C.D.M.G., 1975, Seismic Hazards Study of Ventura County, California, Open File Report 76-5-LA.

California Geological Survey (C.G.S.), 2002a, Seismic Hazard Zone Report for the Oxnard 7.5-Minute Quadrangle, Ventura County, California, Seismic Hazard Zone Report 052.

C.G.S., 2002b, State of California Seismic Hazard Zones, Oxnard Quadrangle, Official Map, December 20, 2002.

C.G.S., 2008, Guidelines for Evaluating and Mitigating Seismic Hazards in California, Special Publication 117A.

Clahan, Kevin B., 2003, Geologic Map of the Oxnard 7.5' Quadrangle, Ventura County, California: A Digital Database, Version 1.0, U.S.G.S., S.C.A.M.P., and C.G.S. Map.

County of Los Angeles Department of Public Works, July 1, 2013, Manual for Preparation of Geotechnical Reports.

Idriss, I.M., and Boulanger, R.W., 2008, Soil Liquefaction during Earthquakes, Earthquake Engineering Research Institute, MNO-12.

Jennings, C.W. and W.A. Bryant, 2010, Fault Activity Map of California, C.G.S. Geologic Data Map No. 6.

NCEER, 1997, Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022.

EARTH SYSTEMS

Pradel, D., 1998 Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 4, April.

Pyke, R., Seed, H. B. And Chan, C. K., 1975, Settlement of Sands Under Multidirectional Shaking, ASCE, Journal of Geotechnical Engineering, Vol. 101, No. 4, April, 1975.

Seed, H. B., and Silver, M. L., 1972, Settlement of Dry Sands During Earthquakes, ASCE, Journal of Geotechnical Engineering, Vol. 98, No. 4.

Seed, H.B., 1987, Design Problems in Soil Liquefaction, Journal of the Geotechnical Engineering Division, ASCE, Volume 113, No. 8.

Southern California Earthquake Center (SCEC), 1999, Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction in California.

Tokimatsu, Kohji and H. Bolton Seed, 1987, Evaluation of Settlements in Sands Due to Earthquake Shaking, Journal of Geotechnical Engineering, ASCE, August 1987, New York, New York.

Ventura County Planning Department, October 22, 2013, Ventura County General Plan Hazards Appendix.

Weber, F. Harold, Jr. and others, 1973, Geology and Mineral Resources of Southern Ventura County, California, C.D.M.G., Preliminary Report 14.

Youd, T.L., C.M. Hansen, and S.F. Bartlett, 2002, Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement, in Journal of Geotechnical and Geoenvironmental Engineering, December 2002.

02.20.2020 - BID SET - NOT FOR CONSTRUCTION

APPENDIX A

Vicinity Map Regional Geologic Map (SCAMP) Seismic Hazard Zones Map Historical High Groundwater Map Field Study Site Plan Logs of Borings Boring Log Symbols Unified Soil Classification System

FIELD STUDY

- A. Two borings (B-1 and B-2) were drilled to depths ranging from approximately 26.5 to 51.5 feet below the existing ground surface to observe the soil profile and to obtain samples for laboratory analyses. The borings were drilled on October 22, 2019, using 8inch diameter hollow-stem continuous flight auger powered by a Simco 2800 truck mounted drilling rig. The approximate locations of the borings were determined in the field by pacing and sighting, and are shown on the Site Plan in this Appendix.
- B2 2 Samples were obtained within the borings with a Modified California (M.C.) ring sampler (ASTM D 3550 with shoe similar to ASTM D 1586), and with a Standard Penetration Test (SPT) sampler (ASTM D 1586). The M.C. sampler has a 3-inch outside diameter, and a 2.42-inch inside diameter when used with brass ring liners (as it was during this study). The SPT sampler has a 2.00-inch outside diameter and a 1.37-inch inside diameter, but when used without liners, as was done for this project, the inside diameter is 1.63 inches. The samples were obtained by driving the samplers with a 140pound hammer dropping 30 inches in accordance with ASTM D 1586. The hammer was operated with an automatic trip mechanism.
- C. One bulk sample was collected from the cuttings of the soils encountered in Boring B-1 between the depths of 1 and 5 feet, and one was collected from the cuttings of the soils encountered in Boring B-2.
- D. The final logs of the borings represent interpretations of the contents of the field logs and the results of laboratory testing performed on the samples obtained during the subsurface study. The final logs for the borings drilled for this study are included in this Appendix. In addition, the borings logs and logs of CPT soundings performed for previous investigations performed in close proximity to the proposed relocatable classroom buildings are included.

02.20.2020 - BID SET - NOT FOR CONSTRUCTION

Logs of Borings

Earth Systems Pacific (2019) Earth Systems Southern California (2012) Earth Systems Southern California (2011)

Logs of CPT Soundings

Earth Systems Southern California (2012) Earth Systems Southern California (2011)

	ŧ	Ea	rth \$	Syst	tems				1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325												
	BOR PRO	ING I JECT	NO: I	B-1 ME: ⊦	lueneme H.	S. R	ele	ocatables	3		DRILLING DATE: October 22, 2019 DRILL RIG: Simco 2800										
	PRO. BOR	JECT ING L		VIBER ATIOI	R: 303277-0 N: Per Plan	02					DRILLING METHOD: Mud Rotary LOGGED BY: SC										
	pth	Sam	ple T	уре				SS	WT.	(%)											
	tical De			. Calif.	ETRA1 ISTAN WS/6'	BOL		S CLA	r dry	STURE	DESCRIPTION OF UNITS										
0	Ver	Bulk	SPT	Mod	PEN RES (BLO	NX NX	; ; []]]	nsc	(pcf)	D N	4.0" Asphalt: 4.0" Base material										
							S	ET -	110.												
F	h2	Å).2	02	0 377/9			ML	84.7	35.2	ALLUVIUM: Mottled yellowish brown and gray silt and clayey silt; some caliche; stiff; moist.										
5					8/11/15			SM	101.3	18.8	ALLUVIUM: Mottled yellowish brown and gray silty fine sand; iron staining; medium dense; moist.										
		-			5/7/7			SM			ALLUVIUM: Gray silty fine sand; medium dense; wet.										
10					5/7/9			SM			Same as above.										
	5/8/1							SM			ALLUVIUM: Olive gray silty fine sand; medium dense; wet.										
15					7/9/13			SM			ALLUVIUM: Olive gray sand; fine to medium grained; some gravel; medium dense; wet.										
					6/8/7			SM			Same as above; becoming fine grained.										
20					2/5/12			SM			ALLUVIUM: Olive gray sand; fine to medium grained; some grav some clay clasts; medium dense; wet.										
	·				4/3/3			CL			ALLUVIUM: Blackish gray silty clay with lenses of olive gray fine to medium grained sand; some gravel; soft; wet.										
25					3/5/5			CL		26.0	ALLUVIUM: Interbedded yellowish brown silty clay; stiff; wet.										
					5/6/4			ML			ALLUVIUM: Yellowish brown and gray sandy silt; loose; wet.										
30					2/7/11			ML/SM			ALLUVIUM: Interbedded Dark gray clayey silt and silty fine sand; medium dense; wet.										
					8/9/5			ML/SM			Same as above.										
35	5 6/5/5 MI						ML/SM			ALLUVIUM: Interbedded gray clayey silt; sandy silt and silty fine											
				~	4/11/8			ML/SM			Same as above.										
ł	• • • • •																				
									Note: The s betwe	tratification	n lines snown represent the approximate boundaries id/or rock types and the transitions may be gradual.										
											Page 1 of 2										

		Ea	rth	Syst	tems				1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325									
	BOR	NG	NO:	B-1 (Continued)						DRILLING DATE: October 22, 2019							
	PRO	JECI	Γ NAI	ME: F	lueneme H.	S. F	Re	locatables	6		DRILL RIG: Simco 2800							
	PRO.	JECT		MBE	R: 303277-0	02					DRILLING METHOD: Mud Rotary							
	BORI	NG			N: Per Plan	1		1	1	1	LOGGED BY: SC							
	Vertical Depth	Sam	Ld(Mod. Calif.	PENETRATION RESISTANCE (BLOWS/6"		STINBUL	JSCS CLASS	UNIT DRY WT. (pcf)	MOISTURE	CONSTRUCTION DESCRIPTION OF UNITS							
40					3/4/6	Î	Î	CL	NQ1	33.0	ALLUVIUM: Olive brown silty sandy clay; loose; wet.							
	~7	20	2	02	0 172/5	D	() ()	CL			ALLUVIUM: Olive brown silty clay with thin silty sand lenses; firm; wet.							
45					3/3/4			CL/ML			ALLUVIUM: Interbedded dark olive brown silty clay and clayey silt; firm; wet.							
					2/3/3			CL			ALLUVIUM: Dark olive brown and gray sandy silty clay; stiff; wet.							
50					4/6/11			CL			ALLUVIUM: Interbedded dark olive brown clayey silt; sandy silt and silty fine sand; medium dense; wet.							
											Total Depth: 51.5 feet.							
55										Groundwater Depth 7.2 feet.								
~																		
60																		
65																		
	• •																	
	· ·																	
70																		
ŀ																		
75																		
ŀ																		
ŀ																		
ŀ																		
da									Note: The s	tratificatio	n lines shown represent the approximate boundaries							
									betwe	een soil an	d/or rock types and the transitions may be gradual.							

Page 2 of 2

		Ea	rth \$	Sysi	tems			1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325									
	BOR	ING	NO: I	B-2						DRILLING DATE: October 22, 2019							
	PRO	JECT			lueneme H.	S. Re	elocata	bles		DRILL RIG: Simco 2800							
	BOR	ING			N: Per Plan	02				LOGGED BY: SC							
		Sam	ple T	уре	Z												
	Dept				NCE NCE		ASS	N N	Г (%	TION							
	al			Calif	STAI NS/	ğ	CL	DR	TUR EN	DESCRIPTION OF UNITS							
	ertic	¥	H	od.		MB	SCS	C) LT	SIO	P CONST.							
0	>	B	SF	Ň	<u> </u>	S IIIII	Š	50	žŬ	A 0" Asphalt: 5 0" Base material							
	·						FT	- 140		4.0 Aspiral, 5.0 Dase material.							
	· ·	1V		-	RITO/17		SM	05.1	20	ALLUVIUM Method vellowish brown silty fine sand: modium dense:							
		K	.2	92	0,10,14		Sivi	35.1	5.9	moist.							
5	02	E			0/11/12		CM										
					0/11/13		Sivi			medium dense; moist.							
					E 10/4 4		CM										
		-			5/9/14		SIVI	80.2	18.4	medium dense; wet.							
10					0/14/14												
					9/11/11		SIVI			wet.							
					0/0/44												
					8/8/11		SM			Same as above.							
15																	
					//12/14		SM			ALLUVIUM: Yellowish brown slightly silty sand; medium dense; wet.							
					5/10/11		SM			ALLUVIUM: Olive brown silty fine sand; medium dense; wet.							
20																	
					6/9/14		SM			ALLUVIUM: Olive brown silty sand; fine to medium grained; medium dense: wet							
					4/10/18		SM			ALLUVIUM: Gray silty sand; fine to medium grained; with coarse							
25																	
20					9/18/21		SM			ALLUVIUM: Gray silty fine sand; dense; wet.							
										Total Depth: 26.5 feet.							
30										Groundwater Depth 8.0 feet.							
<u> </u>																	
-																	
ŀ																	
25																	
ŀ																	
ŀ																	
ŀ																	
i.								Note: The s	tratificatio	n lines shown represent the approximate boundaries							
								betwe	en soil ar	nd/or rock types and the transitions may be gradual.							

		Ea	rth \$	Syst	tems Sou	therr	ı Ca	1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325											
	BOR	NG	NO: :	2			moominati/2oc			DRILLING DATE: December 9, 2010									
	PRO.	JECT	NAN	ME: F	lueneme Hig	jh Sch	ool S	olar Array		DRILL RIG: Mobile B-61									
	PRO.	JECT	NUI	MBEF	R: VT-24513	-01				DRILLING METHOD: 4" Mud Rotary									
	ROKI	NGI	LOCA	110r	N: Per Plan	1	r	T	1	LOGGED BY: G. Olin									
	sth	Sam	ple T	уре	Nо		S	Ę	(%)	TION									
	De			ĨŤ.	ANC VG"		R	2		DESCRIPTION OF UNITS									
	cal			Cal	ETF IST WS	BOI	SC	LO LO	LTS (ET	CONSCIENTION OF DIVITS									
	/erti	¥	ħ	ğ		ΧM	SC	Ct)	<u>j</u> j j	RCO									
0		ā	S	Z	L K E	S S		L S Ø	210	2 inches of asphalt at surface									
	06.00 m 002002				DIL		ML			ARTIFICIAL FILL: Sandy silt, stiff, slightly moist, yellowish brown									
			-		- BIL		0144	400.0	5.0	ALLENVILIME Modium cand, modium dones, clightly molet, gray									
	57	\bigcirc	24		//12/16		SVV	100.3	5.0	ALLUVIUM: Medium sand, medium dense, slightly moist, gray pinkish orange									
Q	∠ .≠																		
5					7/10/15		SW	98.6	8.1	ALLUVIUM: Medium sand with gravel, medium dense, slightly									
										moist, gray pinkish orange									
10					8/12/11		SW	104.9	20.5	ALLUVIUM: Medium to coarse sand, medium dense, wet, gray									
										pinkish orange									
15																			
10					8/8/4		SW			ALLUVIUM: Coarse sand with some gravels and trace clay,									
		1								medium dense, wet, gray plinkish orange									
	ana na menor																		
20		-			7/14/11		sw			ALLUVIUM: Medium to coarse sand with some gravels, medium									
										dense, wet, gray pinkish orange									
25																			
20					11/11/14		SM			ALLUVIUM: Medium sand with silt, medium dense, wet, gray									
										plinish trange									
30					1/1/3		CL		~~~~~	ALLUVIUM: Silty clay with coarse sand, medium stiff, wet, yellowish									
										brown									
l																			
ĺ																			
35	-																		
					2/2/5		CL			ALLUVIUM: Silty sandy clay, medium stiff, wet, grayish brown									
		ſ																	
ŀ																			
L				10-36-02003-00				Note: The s	tratificatio	n lines shown represent the approximate boundaries									
								betwe	een soil ar	nd/or rock types and the transitions may be gradual.									

Page 1 of 2

		Ea	arth	Sys	tems Sou	therr	n Cal	1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325							
	BOR	ING	NO:		ontinued)	h Cob		lor Arrow		DRILLING DATE: December 9, 2010					
	PRO	JEC.	T NU	MBEI	R: VT-24513	n scn ∙01	1001 30	лаг Апау		DRILL RIG. MODILE 8-51 DRILLING METHOD: 4" Mud Rotary					
	BORI	NG	LOC	ATIO	N: Per Plan	1	endelenensiidee I			LOGGED BY: G. Olin					
	epth	San	nple T	уре	LION CUI		ASS	WT.	Е _ (%)	ICTION					
				Calif	ETRA STAI WS/6	BOL	CL S	DRY	TUR	DESCRIPTION OF UNITS					
	Verti	Bulk	TdS	Aod.	DENE SESI BLO	SYMI	1SC	(pcf)	SION.	RCON					
40					4/5/8		-CL	- NO	Allow Contraction	ALLUVIUM: Silty sandy clay, stiff, wet, grayish brown					
					BID		- ' '								
	27	0.	<u>þ</u> C	1											
45	4.4				1/1/4		CL			ALLUVIUM: Clay with medium sand medium stiff wet gravish					
50															
50					1/3/5		CL			ALLUVIUM: Sandy clay, medium stiff, wet, grayish brown					
										TOTAL DEPTH: 51.5 Feet					
55	NY MARKADOLANI AND									Depth to Groundwater Could Not Be Measured					
60															
65															
70	14-11-11-11-11-11-11-11-11-11-11-11-11-1														
75															
10	ena a en														
	101 XX 400131														
	macimum					ann canaide	uuusonooo	Note: The s	tratification	n lines shown represent the approximate boundaries					
				10				betwe	en soil an	d/or rock types and the transitions may be gradual.					
										Page 2 of 2					

		Ea	rth	Syst	ems Sou	therr	1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325								
	BOR	ING	NO:	3				1949-1941-1941-2012-2012-2012-2012-2012		DRILLING DATE: December 8, 2010					
	PRO	JECT		ME: F	lueneme Hig	gh Sch	ool S	olar Array		DRILL RIG: Mobile B-61					
	BOR	JEC I			V Per Plan	-01				LOGGED BY: G. Olin					
	nauren anaur	Sam	inle T	voe	Z				1						
	epth	and and a state of the	1				SS	1×	(%)	ICTION					
	Ď			alif.	TAN IS/6	5	S C	RY	IN TH	DESCRIPTION OF UNITS					
	rtice	×		Ŭ T	SIS	MB(CS		LIST	R CONST.					
0	< <	Bull	SPT	Moo		SΥ	SU	N CN	128						
0								1100		2 inches of asphalt over aggregate base to 2 feet					
								07.0		ARTIFICIAL FILL: Silty sand, dense, slightly moist, yellowish brown					
		HÅ	b0		- 1149		SW	97.8	5.9	ALLUVIUM: Fine to medium sand, loose, slightly moist, gray pinkish orange					
01	2-2-	P													
5		f			4/9/5	<u></u>	SW	106.6	11.2	ALLUVIUM: Medium to coarse sand with some gravels, loose,					
	63 60000 63									moist, gray pinkish orange					
	-														
10	and the second				3/5/10		SIM	1024	20.1	ALL UVILIM. Medium to coarse sand with some gravels loose, wet					
	Ard 1000000 (16)				010/10		000	102.4	20.1	gray pinkish orange					
	84 50000, 54														
	90 004444 pA														
15			14 I. I.												
					3/3/8		SW			ALLUVIUM: Medium sand with some gravels, medium dense, wet, arey pinkish orange					
	** * **									gray printen erange					
	··· ····· ···														
00	100 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF														
20					1/2/4		SW			pinkish orange					
	808 8000007 807														
25	0000500000000														
										TOTAL DEPTH: 21.5 Feet					
										Groundwater Was Encountered At 7.5 Feet					
30	matikatikatika														
	P7 P2003 87														
	a														
	en manne ex														
35	o 6453 0														
00															
	u u														
L		and the second	MORENTE				1999/1992/1992/1992	Note: The s	tratificatio	n lines shown represent the approximate boundaries					
								between soil and/or rock types and the transitions may be gradual.							

Page 1 of 1

		Ea	rth	Syst	tems Sou	therr	n Cal	1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325												
	BOR	NG	NO: :	2						DRILLING DATE: May 10, 2012										
	PRO	JEC1			lueneme Hig	gh Sch	ool So	olar Array		DRILL RIG: Mobile B-61										
	BORI	NGI	LOCA	ATIO	N: Per Plan	-01				LOGGED BY: G. Olin										
	ų	Sam	ple T	уре	Z		(0)	E.	()	TION										
	Dept			ч <u>.</u> :	ATIC NCI		AS	ΥW	RЕ П (9	DET RIVETION OF UNITS										
	cal			Cali	ETR STA WS/	BOL	s cl	DR	JEN	CONDESCRIPTION OF UNITS										
	Vert	Sulk	ЪТ	lod.	PEN	МХ	JSC	LING	NON											
0							GM	140	20	3" AC over gravelly silty sand; slightly moist; dense; yellow brown										
								01.7	21 /	ALLUVIUM: Sandy clay, moist, stiff, olive brown										
~	$-\pi$	X	40	22	31310			51.7	51.4											
\bigcup_{5}																				
-					4/5/7		SW	97.5	26.6	ALLUVIUM: Fine to medium sand; moist; dense; olive brown										
					8/8/8		SW			ALLUNIUM: Fina to modium cand: maint: donos: dark crow										
					0/0/0		000			ALLOVION. The to median sand, most, dense, dank gray										
10					6/7/9		SC			ALLUVIUM: Clayey silty sand; moist; dense; dark gray										
45																				
15					7/9/10		SW			ALLUVIUM: Fine to medium sand; moist; dense; dark gray										
20					40/44/40		CW			ALLUVIUM: Medium to coarse silty sand with some coarse gravel;										
					12/14/12		300			moist; dense; dark gray										
t																				
										TOTAL DEPTH: 21.5 East										
25	Description																			
l										Groundwater was Encountered At 4.5 Feet										
30																				
30									0											
ŀ																				
t										X .										
35																				
ŀ																				
L								Note: The s	tratificatio	n lines shown represent the approximate boundaries										
								between soil and/or rock types and the transitions may be gradual.												

amend

Page 1 of 1

Earth Systems Southern California

E	CPT No: CPT-1	C	PT Vendor:	Kehoe Testing and En	gineering
ЦЦ I	Project Name: Hueneme HS Solar Array			Truck Mounted Electric	
Ë	Project No.: VT24513-01			Cone with 30-ton reaction	on
I	Location: See Site Exploration Plan		Date:	12/2/2010	
L		Eriction Patio (%		Pagistanas Os (tot)	Graphic Log (SBT)
U U	Interpreted Soil Stratigraphy	8 6 4 2	0 50 100	150 200 250 300 350	400 0 12
	Robertson & Campanella ('89) Density/Consistency			TPICIF	
	Sand to Silty Sand dense			5111	
	Sand to Silty Sand dense	FO	RUST		
	Sand to Slity Sand dense	NATTY	SIN		
	Sand dense	NO.			
- 5 -	Sand to Silty Sand dense SE				
	Sand to Silty Sand dense		4 8		
———	Sand 2020 dense				
	Sand dense				
	Sand dense		SI		
10	Sand dense				
	Sand dense		5 0		
	Sand dense		<u>}</u>		
	Sand dense				
	Sand doneo		4		
- 15 -	Silty Sand to Sandy Silt medium dense		3		
	Sand to Silty Sand medium dense	\sim			
	Sand dense		$) \rightarrow$		
	Sand dense				
	Sand dense		1	S	
- 20 -	Sand dense			5	
	Sand to Silty Sand medium dense		1 -		
	Sand to Silty Sand medium dense	<	2 2		
	Sand to Silty Sand medium dense				
25	Gravelly Sand to Sand dense				
20	Gravelly Sand to Sand dense			3	
	Gravelly Sand to Sand dense			3	
	Gravelly Sand to Sand dense				
	Sand dense)		
. 30	Silty Clay to Clay very stiff	5			
	Clay stiff	2			
	Sandy Silt to Clayey Silt medium dense	2			
	Sandy Silt to Clayey Silt medium dense		0		
	Silty Sand to Sandy Silt modium dones		2		
35	Sandy Silt to Clavey Silt yory stiff				
	Silty Sand to Sandy Silt medium dense		15		
	Sand to Silty Sand medium dense				ALC: NO DECISION
	Sand medium dense	<	\rightarrow		
	Sand to Silty Sand medium dense			5	
40	Clayey Silt to Silty Clay very stiff	2			
	Sandy Silt to Clayey Silt very stiff	~	2		
	Silty Sand to Sandy Silt medium dense	2	S.		
	Silty Sand to Sandy Silt medium dense	<	SS		
AE	Sandy Silt to Clayey Silt very stiff	5	5		
43	Clayey Silt to Silty Clay stiff	3			
	Clayey Silt to Silty Clay stiff	2			
	Sandy Silt to Clayey Silt very stiff	3	5		
	Clayey Silt to Silty Clay stiff				
50	Clayey Silt to Silty Clay stiff				
÷.	Clayey Silt to Silty Clay stiff	1			
	Sandy Silt to Clayey Silt very stiff	2			
	End of Sounding @ 52.0 feet				
	End of Sounding @ 53.0 teet				

Earth Systems

CONE PENETROMETER INTERPRETATION

(based on Robertson & Campanella, 1989)

Canada	oouu	F	Project:	Hueneme HS Sola	r Array									Proje	ect No:	VT2	4513-0	01				Date:	12/02	/10
CP	Fst C	NDING:	CPT-1	Plot	: 1	Density:	1	SPT	N	000		Ic#-	Prog	ram de	evelope	d 200	3 by She	elton L	String	er, GE	Earth	System	ns South	hwest
Base	Base	Avg	Avg			Dr correlation.	Est	Qc	1	Total	. 0	Jene	nes &	Davie	S		Clean	Corre	Clean	Est	4 Rel.	SPTN	Nk:	17
Depth	Depth	Tip	Friction	Soil		Density or	Densit	y to	SPT	ро	p'o				Norm.	2.6	Sand		Sand	%	Dens.	Phi	Su	
meters	feet	Qc, tsf	Ratio, %	Classification	USCS	Consistency	(pcf)	N	N(60)	tsf	tsf	F	n	Cq	Qc1n	IC	Qc1n	N ₁₍₆₀₎	N1(60)	Fines	Dr (%)	(deg.)	(tsf)	OCR
0.15	0.5	89.48	1.11	Sand to Silty Sand	SP/SM	medium dense	100	5.4	16	0.013	0.013	1.11	0.56	1.70	143.8	1.82	161.6	28	32	20	92	36		
0.30	1.0	81.08	1.25	Sand to Silty Sand	SP/SM	medium dense	100	5.3	15	0.038	0.038	1.25	0.57	1.70	130.3	1.89	153.6	26	31	25	88	35		
0.46	1.5	73.74	1.02	Sand to Silty Sand	SP/SM	medium dense	100	5.4	14	0.063	0.063	1.02	0.57	1.70	118.5	1.86	136.7	23	27	25	84	34		
0.01	2.5	66.81	0.90	Sand to Silty Sand	SP/SM	medium dense	120	5.4	13	0.090	0.090	0.91	0.54	1.70	107.3	1.76	128.6	23	25	20	84 80	34		
0.91	3.0	85.88	0.61	Sand to Silty Sand	SP/SM	medium dense	120	5.7	15	0.150	0.150	0.61	0.51	1.70	138.0	1.67	140.3	25	28	15	90	35		
1.07	3.5	114.37	0.81	Sand	SP	dense	120	5.8	20	0.180	0.180	0.81	0.50	1.70	183.8	1.65	184.6	34	37	15	100	37		
1.22	4.0	117.02	0.93	Sand to Silty Sand	SP/SM	dense	120	5.8	21	0.210	0.210	0.79	0.50	1.70	195.5	1.62	195.5 193.3	35	39	15	100	37		
1.52	5.0	85.31	1.00	Sand to Silty Sand	SP/SM	medium dense	120	5.5	16	0.270	0.270	1.01	0.55	1.70	137.1	1.81	152.6	27	31	20	90	35		
1.68	5.5	72.21	0.86	Sand to Silty Sand	SP/SM	medium dense	120	5.4	13	0.300	0.284	0.86	0.55	1.70	116.0	1.82	130.0	23	26	20	83	34		
1.98	6.5	95.61	0.42	Sand	SP	medium dense	120	5.9	16	0.360	0.299	0.42	0.50	1.70	153.6	1.57	153.6	25	31	10	95	35		
2.13	7.0	93.15	0.51	Sand	SP	medium dense	120	5.9	16	0.390	0.328	0.51	0.50	1.70	149.7	1.59	149.7	27	30	10	94	35		
2.29	7.5	78.79	0.41	Sand to Silty Sand	SP/SM	medium dense	120	5.9	13	0.420	0.342	0.41	0.50	1.70	126.6	1.60	126.6	23	25	10	87	34		
2.44	8.5	110.72	0.29	Sand	SP	dense	120	5.9	14	0.450	0.356	0.29	0.50	1.69	176.8	1.57	176.8	31	35	10	100	34 36		
2.74	9.0	117.91	0.42	Sand	SP	dense	120	6.1	19	0.510	0.385	0.43	0.50	1.66	184.7	1.47	184.7	31	37	5	100	36		
2.90	9.5	111.53	0.45	Sand	SP	medium dense	120	6.0	18	0.540	0.400	0.45	0.50	1.63	171.5	1.52	171.5	29	34	10	99	36		
3.05	10.0	127.28	0.46	Sand	SP	dense	120	6.1	21	0.570	0.414	0.46	0.50	1.60	192.3	1.48	192.3	32	38	5	100	37		
3.35	11.0	114.95	0.55	Sand	SP	medium dense	120	5.9	19	0.630	0.443	0.56	0.50	1.55	167.9	1.58	167.9	29	34	10	98	36		
3.51	11.5	109.92	0.49	Sand	SP	medium dense	120	5.9	19	0.660	0.457	0.50	0.50	1.52	158.0	1.57	158.0	27	32	10	96	35		
3.00	12.0	113.08	0.48	Sand	SP	medium dense	120	6.0	19	0.690	0.472	0.48	0.50	1.50	160.1 154.8	1.55	160.1	28	32	10	96 95	35		
3.96	13.0	115.44	0.39	Sand	SP	medium dense	120	6.0	19	0.750	0.500	0.39	0.50	1.45	158.7	1.51	158.7	27	32	10	96	35		
4.11	13.5	109.18	0.62	Sand	SP	medium dense	120	5.8	19	0.780	0.515	0.62	0.50	1.44	148.3	1.65	148.5	26	30	15	93	35		
4.27	14.0	125.17	0.61	Sand	SP	dense	120	5.9	21	0.810	0.529	0.61	0.50	1.41	167.3	1.60	167.3	29	33	10	98 100	36 36		
4.57	15.0	143.00	0.29	Sand	SP	dense	120	6.3	23	0.870	0.558	0.29	0.50	1.38	186.1	1.38	186.1	30	37	5	100	36		
4.72	15.5	114.63	0.53	Sand	SP	medium dense	120	5.8	20	0.900	0.572	0.54	0.50	1.36	147.3	1.61	147.3	26	29	10	93	35		
4.88	16.0 16.5	33.61 61.61	2.54	Sandy Silt to Clayey Silt Sand to Silty Sand	ML SP/SM	medium dense	120	4.3	8	0.930	0.587	2.61	0.74	1.54	49.0	2.42	117.0	10	23	60 30	47	30 32		
5.18	17.0	114.80	0.48	Sand	SP	medium dense	120	5.9	20	0.990	0.616	0.49	0.50	1.31	142.2	1.60	142.2	25	28	10	91	35		
5.33	17.5	160.64	0.37	Sand	SP	dense	120	6.2	26	1.020	0.630	0.38	0.50	1.30	196.8	1.42	196.8	33	39	5	100	37		
5.49	18.0	168.91 183.67	0.49	Sand	SP	dense	120	6.1	28	1.050	0.644	0.49	0.50	1.28	204.6	1.47	204.6	34	41	5	100	37		
5.79	19.0	189.17	0.38	Sand	SP	dense	120	6.3	30	1.110	0.673	0.38	0.50	1.25	224.1	1.37	224.1	37	45	5	100	38		
5.94	19.5	204.62	0.38	Sand	SP	dense	120	6.3	32	1.140	0.688	0.38	0.50	1.24	239.9	1.35	239.9	39	48	5	100	38		
6.10	20.0	168.00	0.46	Sand	SP	dense	120	6.1	28	1.170	0.702	0.46	0.50	1.23	194.9	1.48	194.9	33	39	5	100	37		
6.40	21.0	176.78	0.42	Sand	SP	dense	120	6.2	29	1.230	0.731	0.42	0.50	1.20	201.0	1.44	201.0	33	40	5	100	37		
6.55	21.5	105.76	0.90	Sand to Silty Sand	SP/SM	medium dense	120	5.4	19	1.260	0.745	0.91	0.55	1.21	121.4	1.82	136.1	23	27	20	85	34		
6.71	22.0	66.57	0.70	Sand to Silty Sand	SP/SM	medium dense	120	5.2	13	1.290	0.760	0.71	0.58	1.21	76.4	1.91	91.9	15	18	25	66	32		
7.01	23.0	84.75	0.61	Sand to Silty Sand	SP/SM	medium dense	120	5.5	16	1.350	0.788	0.62	0.55	1.18	94.2	1.81	104.7	17	21	20	74	32		
7.16	23.5	57.70	1.56	Silty Sand to Sandy Silt	SM/ML	medium dense	120	4.7	12	1.380	0.803	1.60	0.66	1.20	65.5	2.18	106.4	14	21	40	59	31		
7.32	24.0	118.61	0.70	Sand	SP	medium dense	120	5.6	21	1.410	0.817	0.70	0.53	1.15	128.5	1.73	135.9	23	27	15	87	34		
7.62	25.0	272.75	0.29	Gravelly Sand to Sand	SW	dense	120	6.6	41	1.470	0.846	0.42	0.50	1.13	288.3	1.22	288.3	45	58	0	100	40		
7.77	25.5	280.25	0.28	Gravelly Sand to Sand	SW	dense	120	6.6	42	1.500	0.860	0.28	0.50	1.11	293.7	1.20	293.7	46	59	0	100	40		
7.92	26.0	267.68	0.28	Gravely Sand to Sand	SW	dense	120	6.6	41	1.530	0.875	0.28	0.50	1.10	278.2	1.22	278.2	43	56 67	0	100	39		
8.23	27.0	271.19	0.43	Gravely Sand to Sand	SW	dense	120	6.4	42	1.590	0.904	0.30	0.50	1.09	277.4	1.34	277.4	45	55	5	100	40		
8.38	27.5	260.86	0.47	Gravelly Sand to Sand	SW	dense	120	6.3	41	1.620	0.918	0.47	0.50	1.07	264.7	1.38	264.7	43	53	5	100	39		
8.53	28.0	246.18	0.38	Gravelly Sand to Sand	SW	dense	120	6.4	39	1.650	0.932	0.38	0.50	1.07	247.9	1.34	247.9	40	50	5	100	38		
8.84	29.0	148.41	0.34	Sand	SP	medium dense	120	5.6	26	1.710	0.947	0.80	0.50	1.05	147.5	1.72	154.8	27	31	15	93	35		
8.99	29.5	33.14	3.81	Clayey Silt to Silty Clay	ML/CL	very stiff	120	3.8	9	1.740	0.976	4.02	0.81	1.07	33.4	2.67		9		85			1.89	9.7
9.14	30.0	20.82	4.26	Silty Clay to Clay	CL	very stiff	120	3.4	6	1.770	0.990	4.66	0.87	1.06	20.8	2.86		6		100			1.17	5.8
9.45	31.0	10.92	4.95	Clay	CLICH	stiff	120	2.8	4	1.830	1.004	6.07	0.90	1.05	10.8	3.16		4		100			0.58	2.7
9.60	31.5	38.77	2.99	Sandy Silt to Clayey Silt	ML	loose	120	4.0	10	1.860	1.033	3.15	0.78	1.02	37.3	2.56	115.3	10	23	75	36	30		
9.75	32.0	65.94	2.88	Sandy Silt to Clayey Silt	ML	medium dense	120	4.3	15	1.890	1.048	2.97	0.72	1.01	62.8	2.38	140.0	15	28	55	58	32		
10.06	33.0	18.24	3.06	Clayey Silt to Silty Clay	ML/CL	very stiff	120	4.6	5	1.920	1.062	3.43	0.87	0.99	17.0	2.25	93.6	5	19	45	50	31	1.01	4.5
10.21	33.5	16.68	3.57	Silty Clay to Clay	CL	stiff	120	3.3	5	1.980	1.091	4.05	0.89	0.97	15.3	2.93		5		100			0.92	4.0
10.36	34.0	17.93	2.78	Clayey Silt to Silty Clay	ML/CL	stiff	120	3.4	5	2.010	1.105	3.13	0.87	0.96	16.3	2.84	04.0	5	10	100	00	00	0.99	4.3
10.52	35.0	52.76 63,22	0.77	Sandy Silt to Clayey Silt Sand to Silty Sand	SP/SM	nedium dense	120	4.1	8	2.040	1.120	0.80	0.62	0.96	29.7 57.2	2.50	78.2	8	16	35	20 54	31		
10.82	35.5	27.95	1.85	Sandy Silt to Clayey Silt	ML	loose	120	4.0	7	2.100	1.148	2.00	0.78	0.94	24.8	2.57	78.5	7	16	75	19	29		
10.97	36.0	13.43	2.56	Clayey Silt to Silty Clay	ML/CL	stiff	120	3.2	4	2.130	1.163	3.04	0.90	0.92	11.7	2.95		4		100			0.72	2.9
11.13	30.0	23.00	2.24	Sandy Silt to Clayey Silt Sand to Silty Sand	ML SP/SM	very still medium dense	120	3.7 5.0	14	2.160	1.177	2.4/	0.82	0.92	19.9 63.9	2.70	85,7	13	17	30	58	31	1.28	0.3
11.43	37.5	106.94	0.60	Sand	SP	medium dense	120	5.5	20	2 2 2 0	1.206	0.61	0.55	0.93	94.0	1.80	104.3	18	21	20	74	33		

1	T	Es
ľ	32	
K	-	//S
10	-	10

	Earth Systems
)	Southern California

6	Southern California	1		,								
	CPT No: CPT-2				CP.	۲ Vend	lor:	Kehoe To	esting an	d Engine	ering	
Ш	Project Name: Huenem	e High School No	rthwest	Solar	Array			Truck Mo	unted Ele	ctric	9	
H	Project No.: VT2451	3-01)	Cone with	n 30-ton r	eaction		
H	Location: See Site	Exploration Plan				Da	te:	5/3/2012				
L			Frict	ion Ratio	o (%)		Tip	Resistance	, Qc (tsf)	11	Graphic Log (S	BT)
H	Robertson & Campanella ('89)	Density/Consistency	36	4 :	2 () 50	100	150_200	250 300	350 400	0	12
	Silty Sand to Sandy Silt	dense						TRU	Y I	1		
	Clay	very stiff		-	hp	CK	110-					
	Clay	stiff		2 FI	24	T						
	Silty Clay to Clay	stiff	NP	D		5						
. 5 .	Silty Sand to Sandy Silt	medium dense			3	5						
	Silty Sand to Sandy Silt	medium dense										
	Sand to Silty Sand	medium dense										
	Sand to Silty Sand	medium dense			5							
	Sand to Silty Sand	medium dense										
- 10 -	Sand to Silty Sand	medium dense			2		2					
	Sand	dense			3		B					
	Sand to Silty Sand	medium dense			5		K					
	Sand to Silty Sand	medium dense					1					
- 15	Sand to Silty Sand	medium dense										
	Sand	dense										
\vdash	Sand	dense			\$			S				
\vdash	Sand	dense										
	Sand	dense						4				
- 20	Sand to Silty Sand	very dense		2						2		
	Sand	dense			7							
	Sand to Silty Sand	medium dense			2	-		>				
	Clay	firm		5		\square						
- 25	Clay	firm		2								
———	Clay	firm		\langle								
	Clay	firm		8								
	Clayey Silt to Silty Clay	very stiff	•	2								
20	Silty Clay to Clay	stiff				2						
. 30	Clayey Silt to Silty Clay	very stiff		N								
	Sand to Silty Sand	medium dense			2							
	Silty Sand to Sandy Silt	medium dense			5	4	-					
	Silly Sand to Sandy Sill	mealum dense		-	2	>	•					
- 35 -	Clavey Silt to Silty Clay	stiff		_								
	Silty Sand to Sandy Silt	medium dense			5	-	>					
· · ·	Silty Sand to Sandy Silt	medium dense		-	2							
	Clayey Silt to Silty Clay	very stiff		X		5						
. 40	Silty Sand to Sandy Silt	loose		<	5	5						
	Clayey Silt to Silty Clay	stiff		5		6						
	Clayey Silt to Silty Clay	suff		3								
	Clavey Silt to Silty Clay	stiff		V		5						
	Clayey Silt to Silty Clay	stiff		5		E						
- 45 -	Clayey Silt to Silty Clay	stiff		-	>							
	Sand to Silty Sand	medium dense			>							
	Sand	medium dense										
	Sand	medium dense			1			5				
- 50						-						
	End of Sounding @ 50.2	feet										

49	Earth S	stems
10	Southe	m Calif

CONE PENETROMETER INTERPRETATION

(based on Robertson & Campanella, 1989)

	South	iern Cal F	Project:	la ct: Hueneme High School Northwest Solar Array Project No: VT24513-01										Date:	05/03	/12								
СРТ	SOUN	DING:	CPT-2	Plot	: 1	Density:	1	SPT	N			Program developed 2003 by Shelton L. Stringer, GE,							, Earth	System	s Sout	west		
Dasa	Est. GV	VT (feet):	5.0			Dr correlation:	0 Eet	Bald	1	Qc/N:	0	Jeffe	ries & (Davies			Clean	Corre	Clean	Est	4 Rel	SPTN	Nk	17
Depth	Depth	Tip	Friction	Soil		Density or	Densit	y to	SPT	po	p'o				Norm.	2.6	Sand		Sand	%	Dens.	Phi	Su	
meters	feet	Qc, tsf	Ratio, %	Classification	USCS	Consistency	(pcf)	N	N(60)	tsf	tsf	F	n	Cq	Qc1n	lc	Qc1n	NHOD	N1(60)	Fines	Dr (%)	(deg.)	(tsf)	OCR
0.15	0.5	163.60	1 23	Sand to Silly Sand	SP/SM	dense	100	57	29	0.013	0.013	1.23	0.51	1.70	262.9	168	269.2	49	54	15	100	40		
0.30	1.0	66.50	3.92	Clayey Silt to Silty Clay	ML/CL	medium dense	110	4.5	15	0.039	0.039	3.93	0.70	1.70	106.9	2.32	214.1	25	43	50	80	35		
0.46	1.5	35.97	4.90	Silty Clay to Clay	CL	medium dense	110	4.0	9	0.066	0.066	4.91	0.78	1.70	57.8	2.56	179.6	15	36	75	54	32	1.05	56 1
0.61	2.0	17.87	4.56	Clay	CL/CH	stiff	120	3.6	4	0.095	0.095	4.58	0.83	1.70	19.8	2.75		4		100			0.72	29.2
0.91	3.0	11.43	4.00	Clay	CL/CH	stiff	120	3.4	3	0.155	0.155	4.05	0.87	1.70	18.4	2.86		3		100			0.66	21.8
1.07	3.5	15.13	3.28	Silty Clay to Clay	CL	stiff	120	3.7	4	0.185	0.185	3.32	0.82	1.70	24.3	2.72		4		90			0.88	24.2
1.22	4.0	13.87	3.93	Silty Clay to Clay Silty Sand to Sandy Silt	SM/ML	medium dense	120	4.6	4	0.215	0.215	1.37	0.68	1.70	48.5	2.24	85.9	11	17	45	47	30	0.00	10.0
1.52	5.0	48,10	0.77	Sand to Silty Sand	SP/SM	medium dense	120	5.2	9	0.275	0.275	0.77	0.59	1.70	77.3	1.93	94.3	16	19	25	66	32		
1.68	6.5 6.0	47.23	0.92	Silty Sand to Sandy Silt Silty Sand to Sandy Silt	SM/ML	medium dense	120	5.1	9 10	0.305	0.289	0.92	0.60	1.70	75.9	1.98	97.0 101.9	16	19 20	30	65 68	32		
1.03	6.5	56.40	0.90	Sand to Silty Sand	SP/SM	medium dense	120	5.2	11	0.365	0.318	0.91	0.58	1.70	90.6	1.92	109.4	18	22	25	73	33		
2.13	7.0	67.03	1.05	Sand to Silty Sand	SP/SM	medium dense	120	5.3	13	0.395	0.333	1.06	0.58	1.70	107.7	1.90	128.3	22	26	25	80	34		
2.29	7.5	73.03	1.19	Sand to Silty Sand	SP/SM	medium dense	120	5.3	14	0.425	0.347	1.20	0.58	1.70	117.4	1.91	140.6	24	28 30	25	83 89	34 35		
2.44	8.5	88.90	1.05	Sand to Silty Sand	SP/SM	medium dense	120	5.5	16	0.485	0.376	1.06	0.55	1.70	142.8	1.81	159.2	27	32	20	92	35		
2.74	9.0	90.17	1.08	Sand to Silty Sand	SP/SM	medium dense	120	5.4	17	0.515	0.390	1.09	0.55	1.70	144.9	1.81	161.8	27	32	20	92	35		
2.90	9.5	83.10 84.60	1.16	Sand to Silty Sand	SP/SM SP/SM	medium dense	120	5.4	16 16	0.545	0.405	1.16	0.57	1.70	133.5	1.86	154.1	24	30	20	89	35		
3.20	10.5	87.07	1.28	Sand to Silty Sand	SP/SM	medium dense	120	5.3	16	0.605	0.433	1.29	0.57	1.67	137.3	1.88	161.1	25	32	25	90	35		
3.35	11.0	102.33	0.92	Sand to Silty Sand	SP/SM	medium dense	120	5.6	18	0.635	0.448	0.93	0.53	1.58	153.1	1.75	164.0	27	33	20	94	35		
3.51	11.5 12.0	118.30	0.84	Sand Sand to Silty Sand	SP/SM	dense	120	5.7	21	0.695	0.462	0.85	0.52	1.53	171.3	1.09	185.4	32	37	15	100	37		
3.81	12.5	104.00	1.14	Sand to Silty Sand	SP/SM	medium dense	120	5.4	19	0.725	0.491	1.15	0.55	1.53	150.5	1.82	168.7	27	34	20	94	35		
3.96	13.0	116.07	0.73	Sand	SP	medium dense	120	5.7	20	0.755	0.505	0.73	0.51	1.46	159.8	1.67	162.4	28	32	15	96 08	36		
4.11	13.5 14.0	120.53	0.95	Sand to Sity Sand	SP/SM	medium dense	120	5.6	22	0.785	0.520	1.00	0.53	1.40	163.1	1.75	175.0	29	35	20	97	36		
4.42	14.5	123.67	0.90	Sand	SP	medium dense	120	5.6	22	0.845	0.549	0.90	0.52	1.41	165.0	1.72	173.3	30	35	15	98	36		
4.57	15.0	125.57	0.93	Sand	SP	medium dense	120	5.6	22	0.875	0.563	0.94	0.53	1.40	165.6	1.73	175.0	30	35	15	98 07	36		
4.72	15.5	120.10	0.92	Sand	SP	dense	120	5.6	24	0.935	0.592	0.92	0.53	1.36	172.0	1.73	181.5	31	36	15	99	36		
5.03	16.5	137.17	1.05	Sand to Silty Sand	SP/SM	dense	120	5.6	25	0.965	0.606	1.05	0.53	1.35	174.5	1.75	186.7	32	37	20	100	36		
5.18	17.0	146.77	0.93	Sand	SP	dense	120	5.7	26	0.995	0.621	0.93	0.52	1.32	182.9	1.70	189.2	33 34	38	15 15	100	37		
5.49	18.0	151.10	1.03	Sand	SP	dense	120	5.6	27	1.055	0.649	1.04	0.53	1.29	184.7	1.73	194.8	33	39	15	100	37		
5.64	18.5	155.63	0.97	Sand	SP	dense	120	5.7	27	1.085	0.664	0.97	0.52	1.27	187.4	1.70	194.6	34	39	15	100	37		
5.79	19.0	174.17	0.89	Sand	SP	dense	120	5.8	30	1.115	0.678	0.89	0.50	1.25	205.8 266.9	1.65	205.9	37	41 53	15 5	100	38		
6.10	20.0	248.57	0.68	Sand	SP	dense	120	6.1	41	1.175	0.707	0.68	0.50	1.22	287.4	1.46	287.4	48	57	5	100	40		
6.25	20.5	305.30	2.01	Sand to Silty Sand	SP/SM	very dense	120	5.5	55	1.205	0.721	2.01	0.54	1.23	355.2	1.78	388.0	65	78	20	100	43		
6.40	21.0	317.63	1.09	Sand	SP	very dense dense	120	5.9 6.2	53 36	1.235	0.736	0.55	0.50	1.19	251.5	1.50	251.5	42	50	5	100	39		
6.71	22.0	142.30	0.88	Sand	SP	medium dense	120	5.6	25	1.295	0.765	0.88	0.53	1.19	159.5	1.72	167.9	29	34	15	96	36		
6.86	22.5	136.03	0.74	Sand	SP	medium dense	120	5.7	24	1.325	0.779	0.74	0.52	1.17	150.6	1.69	155.4	27	31	15	94 52	35		
7.01	23.0	47.30 9.60	1.98	Silty Sand to Sandy Silt Clav	CL/CH	stiff	120	4.5	3	1.355	0.793	4.36	0.93	1.28	11.7	3.04	100.0	3	22	100	52	51	0.52	3.1
7.32	24.0	6.27	2.93	Clay	CL/CH	firm	120	2.8	2	1.415	0.822	3.79	0.97	1.28	7.6	3.15		2		100			0.32	1.8
7.47	24.5	6.37	3.10	Clay	CL/CH	firm	120	2.8	2	1.445	0.837	4.02	0.97	1.26	7.6	3.17		2		100			0.33	1.8
7.77	25.5	6.60	4.04	Clay	CL/CH	firm	120	2.7	2	1.505	0.865	5.23	0.99	1.22	7.6	3.23		2		100			0.34	1.8
7.92	26.0	9.57	4.59	Clay	CL/CH	stiff	120	2.9	3	1.535	0.880	5.46	0.96	1.19	10.8	3.13		3		100			0.51	2.7
8.08	26.5	9.90	4.23	Clay	CUCH	stiff	120	2.9	3	1.565	0.894	5.03	0.95	1.17	11.0	3.10		3		100			0.38	2.8
8.38	27.5	6.80	4.19	Clay	CL/CH	firm	120	2.6	3	1.625	0.923	5.34	1.00	1.15	7.4	3.25		3		100			0.35	1.7
8.53	28.0	8.93	3.81	Clay	CL/CH	firm	120	2.9	3	1.655	0.937	4.67	0.96	1.12	9.5	3.13		3		100			0.47	2.3
8.69	28.5	11.33	4.69	Clay Silty Sand to Sandy Silt	CL/CH	stiff	120	2.9 4.5	4	1.685	0.952	5.51	0.95	1.11	11.8 38.9	3.10	74.8	4	15	50	38	30	0.01	3.0
8.99	29.5	13.83	4.40	Clay	CL/CH	stiff	120	3.1	4	1.745	0.981	5.04	0.92	1.07	14.0	3.02		4		100			0.76	3.7
9.14	30.0	12.00	3.24	Silty Clay to Clay	CL	stiff	120	3.1	4	1.775	0.995	3.81	0.91	1.06	12.0	2.99		4		100			0.65	3.1
9.30	30.5	10.50	3.06	Silty Clay to Clay Sandy Silt to Clayer Silt	CL	stiff verv stiff	120	3.1	3	1.805	1.009	2.84	0.93	1.04	28.0	2.63		7		80			1.64	7.9
9.60	31.5	126.93	1.41	Sand to Silty Sand	SP/SM	medium dense	120	5.2	25	1.865	1.038	1.43	0.59	1.01	121.3	1.95	150.9	24	30	30	85	34		
9.75	32.0	144.37	1.46	Sand to Silty Sand	SP/SM	medium dense	120	5.2	28	1.895	1.053	1.48	0.59	1.00	136.9	1.93	166.1	27	33	25	90	35		
9.91	32.5	41.37 60.03	1./1	Sity Sand to Sandy Silt Silty Sand to Sandy Silt	SM/ML	medium dense	120	4.3	14	1.925	1.081	2.21	0.73	0.99	55.9	2.33	113.9	13	23	50	53	31		
10.21	33.5	41.30	2.44	Sandy Silt to Clayey Silt	ML	loose	120	4.1	10	1.985	1.096	2.56	0.76	0.97	38.0	2.50	104.3	10	21	65	37	30		
10.36	34.0	60.37	1.27	Silty Sand to Sandy Silt	SM/ML	medium dense	120	4.7	13	2.015	1.110	1.31	0.67	0.97	55.3	2.19	90.1	12	18 16	40 65	52 26	31		
10.52	34.5 35.0	20.93	2.11	Sandy Silt to Clayey Silt Sandy Silt to Clayey Silt	ML	very stiff	120	3.7	6	2.045	1,139	2.34	0.83	0.93	18.6	2.71	10.0	6	10	90	2.0	20	1.17	5.0
10.82	35.5	11.87	2.57	Clayey Silt to Silty Clay	ML/CL	stiff	120	3.1	4	2.105	1.153	3.13	0.92	0.92	10.4	2.99		4		100			0.63	2.5
10.97	36.0	19.73	2.48	Clayey Silt to Silty Clay Sand to Silty Sand	ML/CL	very stiff	120	3.5	6 17	2.135	1.168	2.78	0.85	0.92	17.1 75.8	2.79	105.2	6 16	21	95 35	65	32	1.09	4.5
11.13	37.0	56.07	1.48	Silty Sand to Sandy Silt	SM/ML	medium dense	120	4.6	12	2.195	1.197	1.54	0.69	0.92	48.7	2.27	90.5	11	18	50	47	30		
11.43	37.5	48.50	1.49	Silty Sand to Sandy Silt	SM/ML	loose	120	4.4	11	2.225	1.211	1.56	0.71	0.91	41.7	2.33	85.1	10	17	55	40	30		
11.58	38.0	47.77	1.93	Silty Sand to Sandy Silt	SM/ML	medium dense	120	4.3	11	2.255	1.225	2.03	0.73	0.90	40.5	2.41	95.1	10	19	60	39	30		

Earth Systems

14.02 46.0

14.33 47.0

46.5 14.17

48.5

13.56 44.5 45.0

13.72

13.87 45.5

14.48 47.5

14.63 48.0

14.78

14.94 49.0

15.09 49.5 11.80

11.00

24.57

69.10

133 58

156.07

154.37

164.87

193.60

194.47

2.08

2.12

1.99

2.89

1.25

0.95

0.83

0.99

1.01

1.22 Sand

1.29 Sand

Sand

Sand

Sand

Sand

9.13

Clayey Silt to Silty Clay ML/CL firm

Clayey Silt to Silty Clay ML/CL stiff

Clayey Silt to Silty Clay ML/CL stiff

Clayey Silt to Silty Clay ML/CL very stiff

SP

SP

SP

SP

SP

SP

CONE PENETROMETER INTERPRETATION

(based on Robertson & Campanella, 1989)

100

100

100

100

20 87 35

3

4

4

7

25 29

17 45 50 31

25 25 78 33

27 20 85 34

27 25 84 34

34 20 93 36

34 25 93 36

6.5 3.15

8.4 3.04

7.8 3.06

17.6 2.82

0.45 1.4

0.61 1.9

0.56 1.7

1,36 4.5

	0	South	iern Cal	itornia																						
			1	Project:	Hueneme High Sch	1001 No	orthwest Sola	r Arra	У						Proje	ct No:	VT24	513-0	1				Date: 05/03/12			
1	CPT	SOUN	IDING:	CPT-2	Plot:	1	Density:	1	SPT	N				Pr	ogram o	develop	ed 200	3 by Sh	elton L	String	er, GE	Earth	System	s South	west	
		Est G	NT (feet):	5.0			Dr correlation:	0	Bald	i	Qc/N:	0	Jeffer	ies & I	Davies			Ph	i Corre	lation:		4	SPT N			
ſ	Base	Base	Avg	Avg				Est	Qc		Total							Clean		Clean	Est	Rel.		Nk	17	
	Depth	Depth	Tip	Friction	Soil		Density or	Density	to	SPT	po	p'o				Norm.	2.6	Sand		Sand	95	Dens.	Phi	Su		
	meters	feet	Qc, tsf	Ratio, %	Classification	USCS	Consistency	(pcf)	N	N(60)	tsf	tsf	F	n	Cq	Qc1n	lc	Qcin	NILEON	Nigeo	Fines	Dr (%)	(deg.)	(tsf)	OCR	
ſ	11.73	38.5	14.47	3.41	Silty Clay to Clay	CL	stiff	120	3.1	5	2 285	1.240	4.04	0.92	0.86	11.8	3.01		5		100			0.78	2.9	
-	11.89	39.0	25.13	1.69	Sandy Silt to Clayey Silt	ML	very stiff	120	3.9	6	2.315	1.254	1.86	0.80	0.87	20.7	2.62		6		80			1.40	5.5	
	12.04	39.5	51.50	1.62	Silty Sand to Sandy Silt	SM/ML	medium dense	120	4.4	12	2.345	1.269	1.70	0.71	0.88	42.8	2.34	89.4	10	18	55	42	30			
	12.19	40.0	47.67	1.43	Silty Sand to Sandy Silt	SM/ML	loose	120	4.4	11	2.375	1.283	1.50	0.71	0.87	39.3	2.34	81.7	10	16	55	38	30			
	12.34	40.5	13.90	2.78	Clayey Silt to Silty Clay	ML/CL	stiff	120	3.1	4	2.405	1.297	3.36	0.92	0.83	10.9	2.99		4		100			0.74	2.7	
	12.50	41.0	10.87	2.55	Clayey Silt to Silty Clay	ML/CL	stiff	120	3.0	4	2.435	1.312	3.28	0.95	0.82	8.4	3.08		4		100			0.56	1.9	
	12.65	41.5	13.10	2.57	Clayey Silt to Silty Clay	ML/CL	stiff	120	3.1	4	2.465	1.326	3.17	0.92	0.81	10.1	3.01		4		100			0.69	2.4	
	12.80	42.0	14.00	2.87	Clayey Silt to Silty Clay	ML/CL	stiff	120	3.1	5	2.495	1.341	3.50	0.92	0.80	10.6	3.01		5		100			0.74	2.6	
	12.95	42.5	14.43	3.24	Silty Clay to Clay	CL _	stiff	120	3.1	5	2.525	1.355	3.92	0.93	0.79	10.8	3.04		5		100			0.77	2.6	
	13.11	43.0	14.27	2.12	Clayey Silt to Silty Clay	ML/CL	stiff	120	3.3	4	2.555	1.369	2.58	0.90	0.79	10.7	2.94		4		100			0.76	2.6	
	13.26	43.5	22.57	2.22	Sandy Silt to Clayey Silt	ML	very stiff	120	3.6	6	2.585	1.384	2.51	0.84	0.80	17.0	2.76		6		95			1.25	4.3	
	13.41	44.0	11.53	3.03	Silty Clay to Clay	CL	stiff	120	2.9	4	2.615	1.398	3.92	0.96	0.77	8.3	3.13		4		100			0.60	1.9	

3

4

2.735

medium dense 120 5.3 25

medium dense 120 5.5 28

medium dense 120 5.4 29

medium dense 120 5.4 31

medium dense 120 5.4 36

medium dense 120 5.3 36

120 2.8

120 3.1

120 3.0 4

120 3.5 7 2.645 1.413 2.93 0.97 0.76

2.675 1.427 2.74 0.93 0.76

2.705 1.441 2.64 0.94 0.75

1.456 3.25 0.86 0.76

2.765 1.470 1.30 0.67 0.80 52.4 2.20 87.4 12

2.795 1.485 0.97 0.58 0.82 103.9 1.89 122.5 21

2.825 1.499 0.84 0.55 0.83 121.8 1.80 134.6 23

2.855 1.513 1.01 0.57 0.82 119.1 1.86 136.9 23

2.915 1.542 1.24 0.56 0.81 148.0 1.85 169.1 29

2.945 1.557 1.31 0.57 0.80 147.5 1.87 171.0 29

2.885 1.528 1.03 0.56 0.81 126.8 1.84 144.1

Silty Sand to Sandy Silt SM/ML medium dense 120 4.7 15

CPT-2 Interpretation-v2.4

- 1. The location of borings were approximately determined by pacing and/or siting from visible features. Elevations of borings are approximately determined by interpolating between plan contours. The location and elevation of the borings should be considered.
- 2. The stratification lines represent the approximate boundary between soil types and the transition may be gradual.
- 3. Water level readings have been made in the drill holes at times and under conditions stated on the boring logs. This data has been reviewed and interpretations made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, tides, temperature, and other factors at the time measurements were made.

BORING LOG SYMBOLS

UNIFIED SOIL CLASSIFICATION SYSTEM

N/	AJOR DIVISION	S	GRAPH SYMBOL	LETTER SYMBOL	TYPICAL DESCRIPTIONS
	GRAVEL AND			GW	WELL-GRADED GRAVELS, GRAVEL- SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED	SOILS BID SE	F(NES)		GP	POORLY-GRADED GRAVELS, GRAVEL- SAND MIXTURES, LITTLE OR NO FINES
soiks 20	MORE THAN 50% OF COARSE	GRAVELS WITH FINES (APPRECIABLE		GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES
	FRACTION <u>RETAINED</u> ON NO. 4 SIEVE	AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
	SAND AND	CLEAN SAND		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
	SANDY SOILS	FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE THAN 50% OF MATERIAL IS <u>LARGER</u> THAN NO. 200 SIEVE	MORE THAN 50% OF COARSE	SANDS WITH FINES (APPRECIABLE		SM	SILTY SANDS, SAND-SILT MIXTURES
SIZE	PASSING NO. 4 SIEVE	AMOUNTOF FINES)		SC	CLAYEY SANDS, SAND-CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE	SILTS AND CLAYS	LIQUID LIMIT <u>LESS</u> THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
GRAINED SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
MORE THAN 50% OF MATERIAL IS SMALLER THAN	AND CLAYS	LIQUID LIMIT <u>GREATER</u> THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
NO. 200 SIEVE SIZE				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HI	GHLY ORGANIC SC	DILS		РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENT

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

UNIFIED SOIL CLASSIFICATION SYSTEM

02.20.2020 - BID SET - NOT FOR CONSTRUCTION

APPENDIX B

Laboratory Testing Tabulated Laboratory Test Results Individual Laboratory Test Results

LABORATORY TESTING

- A. Samples were reviewed along with field logs to determine which would be analyzed further. Those chosen for laboratory analyses were considered representative of soils that would be exposed and/or used during grading, and those deemed to be within the influence of proposed structures. Test results are presented in graphic and tabular form in this Appendix.
- B. In-situ moisture content and dry unit weight for the ring samples were determined in general accordance with ASTM D 2937.
 - A maximum density test was performed to estimate the moisture-density relationship of typical soil materials. The test was performed in accordance with ASTM D 1557.
- D. The relative strength characteristics of soils were determined from the results of a direct shear test on a remolded sample. The specimen was placed in contact with water at least 24 hours before testing, and was then sheared under normal loads ranging from 1 to 3 ksf in general accordance with ASTM D 3080.
- F. An expansion index test was performed on a bulk soil sample in accordance with ASTM D 4829. The sample was surcharged under 144 pounds per square foot at moisture content of near 50 percent saturation. The sample was then submerged in water for 24 hours, and the amount of expansion was recorded with a dial indicator.
- GG. The gradation characteristics of certain samples were evaluated by hydrometer (in accordance with ASTM D 7928) and sieve analysis procedures. The samples were soaked in water until individual soil particles were separated, then washed on the No. 200 mesh sieve, oven dried, weighed to calculate the percent passing the No. 200 sieve, and mechanically sieved. Additionally, hydrometer analyses were performed to assess the distribution of the particles that passed the No. 200 screen. The hydrometer portions of the tests were run using sodium hexametaphosphate as a dispersing agent.
- A portion of the bulk sample was sent to another laboratory for analyses of soil pH, resistivity, chloride contents, and sulfate contents. Soluble chloride and sulfate contents were determined on a dry weight basis. Resistivity testing was performed in accordance with California Test Method 424, wherein the ratio of soil to water was 1:3.
- J. The Plasticity Indices of selected samples were evaluated in accordance with ASTM D 4318.

TABULATED LABORATORY TEST RESULTS

REMOLDED SAMPLE

.

ICTIO	N
B-1@1'-5'	
MB CONST	
118.0	
12.5	
120.5*	
12.0*	
40.0	
32°	
0	
33°	
38	
7.9	
810	
14	
1,900	
	B-1@1'-5' Mb CONSTRUCTO 12.5 120.5* 12.0* 40.0 32° 0 33° 38 7.9 810 14 1,900

*Corrected for Oversize (ASTM D4718)

02.20.2020 - BID SET - NOT FOR CONSTRUCTION

Individual Laboratory Test Results

EARTH SYSTEMS PACIFIC

UNIT DENSITIES AND MOISTURE CONTENT

ASTM D2937 & D2216

	Job Name:	Hueneme H	ligh School Rela	ocatables	-710	N
			OP (ONSTR	NCIIO	_
		010	T Unit	Moisture	USCS]
	Sample	Depth	Dry	Content	Group	
0	Location	P (feet)	Density (pcf)	(%)	Symbol	
2020						3
02.20.2	B-1	2.5	84.7	35.2	ML	
	B-1	5	101.3	18.8	SM	
	B-1	25		26.0	CL	
	B-1	40		33.0	CL	
	B-2	2.5	95.1	3.9	SM	
	B-2	7.5	80.2	18.4	SM	

Job Name: Hueneme High School Relocatables

File Number: 303277-002

File Number: 303277-002

Moisture Content, percent

EARTH SYSTEMS

EXPANSION INDEX

ASTM D-4829, UBC 18-2

EI	UBC Classification
0-20	Very Low
21-50	Low
51-90	Medium
91-130	High
130+	Very High

PLASTICITY INDEX

40

30

20

10

0 0 CL-ML

10

20

30

ASTM D-4318

CL

ML

50

Liquid Limit

60

40

ĊН

MН

70

80

90

PLASTICITY INDEX

EARTH SYSTEMS

02.20.2020 - BID SET - NOT FOR CONSTRUCTION

APPENDIX C

Table 18-I-D Minimum Foundation Design Table

EARTH SYSTEMS PACIFIC

thesis () are footnotes. otnotes (1) through (8)			RESTRICTIONS ON PUERS	UNDER RAISED FLOORS A design by a registered	excepted when approved by the Bullding Official	Piers allowed for single floor loads only	Piers allowed for single floor loads only.	Piers not	allowed.		allowed.	
Annubers within paren	20)20	PREMOISTENING	FOOTINGS, PIERS AND SLABS	ET - I	Moistening of ground recommended prior to placing concrete.	120% of optinum moisture required to a depth of 21" below lowest adjacent grade. Testing required.	130% of optimum moisture required to a depth of 27"	beloù lowest adjacent grade. Testing required.	140% of optimum moisture required	below lowest adjacent grade. Testing required	
Refe . 7 (SLABS	HICKNESS		TOTAL THICKNESS OF	SAND	2"	4,*	4,		"K	i	rchitect
REMENTS	CONCRETE !	3 ½ " MINIMUM T		REINFORCEMENT (3)		6x6-10/10 WWF	6x6-10/10 WWF	6x6-10/10 WWF	EXT. FOOTING SLAB (7)	6x6-10/10 or #3 @ 24' E.W.	EXT. FOOTING) SLAB (7)	sed engineer/a
TABLE 18-1-D um foundation requin	SYSTEM (4) (5)			REINFORCEMENT FOR CONTINUOUS		1-#4 top and bottom	1-#4 top and bottom	1-#4 top and bottom	#3 BARS @ 24" IN BEND3' INTC	1-#5 top and bottom	#3 BARS @ 24" IN BEND 3' INTO	lesign by licens
MINIM	AISED FLOOR	VTERIOR OTINGS FOR LAB AND ED FLOORS	(5)	ATURAL JND AND (3) (8)		12 18 24	12 18 24	12 18	54	12	54	Special (
	SLAB AND F	TER SI SI RAIS		TH BELOW NA ACE OF GROU NISH GRADE	ICHES	12 18 24	15 18 24	21	24	27 27	24	
	IOI SI	ALL		DEP SURF	II	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	· 9 / 9	~~~~	\$	∞ ∝) <i>«</i>	
	ATIO	SSENSO) IH	LOOTING		12 18 18	12 15 18	12 15	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12		
	ROUND	IDLH KRESS	3 M	FOOTING		∞ ∞ <u>0</u>	<u>0</u> ∞ ∞	05 00	0	8	0 0	
		৪ম	00	ABER OF FL		- 2 6	- 9 0	- 0	<u>س</u>		<i>s</i> m	
				WEIGHTED EXPANSION INDEX		0-20 Very low (nonexpansive)	21-50 Low	51-90 Medium		91-130 High	19977 -	Above 130 Very High

02.20.2020 - BID SET - NOT FOR CONSTRUCTION

APPENDIX D

Site Classification Calculation 2016 CBC & ASCE 7-10 Seismic Parameters OSHPD Seismic Design Maps Spectral Response Values Table Spectral Response Curves Fault Parameters

										_								D	C	ONSTRUCTION
Job Number: 303277-002	Job Name: Hueneme H.S. Relocatable Classrooms	Calc Date: 12/11/2019 CPT/Roring ID: 8-1		20)2	0	Total Thickness of Soil = 100.00 ft	N-bar Value = 16.2 *	Site Classification = Class D	*Equation 20.4-2 of ASCE 7-10	E	- 7		10	T	F				
	6		<u>т</u>	ModCal.			Sublayer Thick/N	0.313	0.250	0.294	0.278	0.417	0.500	0.313	0.357	0.625	0.833	0.088	1.068	0.833
	EARTH SYSTEM		" if correlated from CP	'T blow/ft" if from SPT/	er Max Limit = 100.		Sublayer Thick (ft)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	1.5	23.5	25.0
4	Ţ		Use "SPT Nec	Use "Raw SP	Input Numb	÷	SPT N	16.0	20.0	17.0	18.0	12.0	10.0	16.0	14.0	8.0	0.9	17.0	22.0	30.0
							Depth (ft)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	51.5	75.0	100.0

2016 California Building Code (CBC) (ASCE 7-10) Seismic Design Parameters

OSHPD

Latitude, Longitude: 34.1595, -119.1809

Туре	Value	Description
SS	2.264	MCE _R ground motion. (for 0.2 second period)
S ₁	0.804	MCE _R ground motion. (for 1.0s period)
S _{MS}	2.264	Site-modified spectral acceleration value
S _{M1}	1.205	Site-modified spectral acceleration value
S _{DS}	1.509	Numeric seismic design value at 0.2 second SA
S _{D1}	0.804	Numeric seismic design value at 1.0 second SA
Туре	Value	Description
SDC	Е	Seismic design category
Fa	1	Site amplification factor at 0.2 second
Fv	1.5	Site amplification factor at 1.0 second
PGA	0.849	MCE _G peak ground acceleration
F_{PGA}	1	Site amplification factor at PGA
PGAM	0.849	Site modified peak ground acceleration
ΤL	8	Long-period transition period in seconds
SsRT	2.264	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	2.431	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	2.406	Factored deterministic acceleration value. (0.2 second)
S1RT	0.804	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.854	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	0.817	Factored deterministic acceleration value. (1.0 second)
PGAd	0.89	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS}	0.931	Mapped value of the risk coefficient at short periods
C _{R1}	0.942	Mapped value of the risk coefficient at a period of 1 s

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC /OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

Spectral Response Values

Probabilistic and Deterministic Response Spectra for MCE compared to Code Spectra

for 5% Viscous Damping Ratio									
[GeoMean	Max	Max 84th			TR	VICH		
	Probab. 2%	Rotated	Percentile	Determ.	$\sim cO$	Site	Ŭ	Site	2016
	in 50 yr	Probab. 2%	Determ.	Lower Limit	Determ.	Specific	2016 CBC	Specific	CBC
Natural	MCE	in 50 yr	MCE	MCE	MCE	MCE	MCE	Design	Design
Period	Spectrum	MCEr	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum
Т	(1)	(2)	5-(3)	(4)	(5)	(6)	(7)	(8)	(9)
(seconds)	2475-yr	- 2475-yr			max(3,4)	min(2.5)		2/3*(6)*	2/3*(7)
0.00	20.817	0.837	0.871	0.600	0.871	0.837	0.906	0.558	0.604
0.05	1.089	1.116	1.019	0.975	1.019	1.019	1.543	0.823	1.029
0.10	1.362	1.395	1.365	1.350	1.365	1.365	2.181	1.163	1.454
0.15	1.555	1.592	1.638	1.500	1.638	1.592	2.264	1.207	1.509
0.20	1.748	1.790	1.775	1.500	1.775	1.775	2.264	1.207	1.509
0.30	1.824	1.871	1.888	1.500	1.888	1.871	2.264	1.247	1.509
0.40	1.757	1.886	1.924	1.500	1.924	1.886	2.264	1.257	1.509
0.50	1.689	1.895	1.946	1.500	1.946	1.895	2.264	1.264	1.509
0.75	1.433	1.681	1.814	1.200	1.814	1.681	1.608	1.120	1.072
1.00	1.176	1.440	1.561	0.900	1.561	1.440	1.206	0.960	0.804
1.50	0.883	1.081	1.199	0.600	1.199	1.081	0.804	0.721	0.536
2.00	0.590	0.723	0.949	0.450	0.949	0.723	0.603	0.482	0.402
	Crs:	0.931						* > 80% of	(9)
	Cr1.	0.942							

Probabilistic Spectrum from 2008 USGS Ground Motion Mapping Program adjusted for site conditions and maximum rotated component of ground motion using NGA, Column 2 has risk coefficients Cr applied.

Reference: ASCE 7-10, Chapters 21.2, 21.3, 21.4 and 11.4

					S	ite-Specifi	c	
Mapped MCE Acceleration Values			Site Coe	efficients	Design Acceleration Values			
PGA	0.849	g	F _{PGA}	1.00	PGA _M	0.849	g	
Ss	2.264	g	Fa	1.00	S _{DS}	1.207	g	
S_1	0.804	g	F _v	1.50	S _{D1}	0.963	g	

Spectral Amplification Factor for different viscous damping, D (%):

0.5%	2%	10%	20%
1.50	1.23	0.83	0.67

 $1 g = 980.6 cm/sec^2 = 32.2 ft/sec^2$ PSV (ft/sec) = 32.2(Sa)T/(2 π)

Key: Probab. = Probabilistic, Determ. = Deterministic, MCE = Maximum Considered Earthquake

Hueneme High School Relocatables

		T	able 1							
	ŀ	Fault P	arame	eters						
			Avg	Avg	Avg	Trace		101	Mean	
			Dip	Dip	Rake	Length	Fault	Mean	Return	Slip
Fault Section Name	Dista	nce	Angle	Direction	NIS	IKC	Type	Mag	Interval	Rate
	miles)	(km)	(deg.)	(deg.)	(deg.)	(km)			(years)	(mm/yr)
	2.0	OI	FC	150	00	10	D			
Oak Ridge (Onshore)	2.0	3.2	65	159	90	49	В	7.4		4
Simi-Santa Rosa	6.1	9.8	60	346	30	39	В	6.8		1
Malibu Coast (Extension), alt 1	6.4	10.3	74	4	30	35	B,	6.5		
Malibu Coast (Extension), alt 2	6.4	10.3	74	4	30	35	B.	6.9		
Oak Ridge (Offshore)	8.2	13.3	32	180	90	38	В	6.9		3
Ventura-Pitas Point	9.4	15.1	64	353	60	44	В	6.9		1
Channel Islands Thrust	10.4	16.7	20	354	90	59	В	7.3		1.5
Anacapa-Dume, alt I	12.9	20.8	45	354	60	51	В	7.2		3
Anacapa-Dume, alt 2	12.9	20.8	41	352	60	65	В	7.2		3
Santa Cruz Island	13.0	20.9	90	188	30	69	В	7.1		1
Red Mountain	14.2	22.9	56	2	90	101	В	7.4		2
Channel Islands Western Deep Ramp	14.3	23.1	21	204	90	62	B'	7.3		
Malibu Coast, alt 1	16.2	26.0	75	3	30	38	В	6.6		0.3
Malibu Coast, alt 2	16.2	26.0	74	3	30	38	В	6.9		0.3
Pitas Point (Lower)-Montalvo	17.0	27.3	16	359	90	30	В	7.3		2.5
Sisar	17.4	28.0	29	168	na	20	$\mathbf{B'}$	7.0		
North Channel	17.8	28.6	26	10	90	51	В	6.7		1
Shelf (Projection)	17.9	28.9	17	21	na	70	$\mathbf{B'}$	7.8		
San Cayetano	19.4	31.2	42	3	90	42	В	7.2		6
Mission Ridge-Arroyo Parida-Santa Ana	19.6	31.6	70	176	90	69	В	6.8		0.4
Santa Cruz Catalina Ridge	21.0	33.9	90	38	na	137	B'	7.3		
Santa Monica Bay	24.9	40.0	20	44	na	17	B'	7.0		
Pitas Point (Upper)	25.1	40.3	42	15	90	35	В	6.8		1
Santa Ynez (East)	25.3	40.6	70	172	0	68	В	7.2		2
San Pedro Basin	26.6	42.9	88	51	na	69	B'	7.0		
Santa Susana, alt 1	27.3	44.0	55	9	90	27	В	6.8		5
Santa Susana, alt 2	27.6	44.4	53	10	90	43	B'	6.8		
Northridge Hills	28.8	46.4	31	19	90	25	B'	7.0		
Pine Mtn	29.0	46.6	45	5	na	62	Β'	7.3		
Oak Ridge (Offshore), west extension	29.0	46.7	67	195	na	28	$\mathbf{B'}$	6.1		
Del Valle	30.7	49.4	73	195	90	9	\mathbf{B}'	6.3		
Holser, alt 1	31.1	50.0	58	187	90	20	В	6.7		0.4
Holser, alt 2	31.1	50.0	58	182	90	17	B'	6.7		
Northridge	32.1	51.7	35	201	90	33	В	6.8		1.5
Compton	33.6	54.1	20	34	90	65	B'	7.5		
San Pedro Escarpment	34.2	55.0	17	38	na	27	B'	7.3		
Pitas Point (Lower, West)	34.4	55.3	13	3	90	35	B	7.2		2.5
Santa Ynez (West)	35.0	56.3	70	182	0	63	B	6.9		2.0
Big Pine (Central)	36.6	58.8	76	167	na	23	B'	6.3		-
Santa Monica, alt 1	36.9	59.4	75	343	30	14	В	6.5		1

Reference: USGS OFR 2007-1437 (CGS SP 203)

Based on Site Coordinates of 34.1595 Latitude, -119.1809 Longitude

Mean Magnitude for Type A Faults based on 0.1 weight for unsegmented section, 0.9 weight for segmented model (weighted by probability of each scenario with section listed as given on Table 3 of Appendix G in OFR 2007-1437). Mean magntude is average of Ellworths-B and Hanks & Bakun moment area relationship.

02.20.2020 - BID SET - NOT FOR CONSTRUCTION

APPENDIX E

Liquefaction and Dry Sand Seismic Settlement Analyses Lateral Spreading Analyses Results

		' Sand sidence (n) .02	
		= 14:2 DD Subs	
		Strain 0: 8 8 8 9 4 6 0 4 4 7 6 0 4 8 8 8 6 0 4 8 9 8 9 8 6 0 4 8 9 8 8 6 0 4 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	
		Strain 4.5E-04 3.4E-04	
		Shear Strain 2.5E-04 7 7.7E-04 6.5E-04 6.5E-04 6.5E-04 6.5E-04 3.5E-04 3.5E-04 3.5E-04 3.5E-04 3.5E-04	
		X SANDS X SANDS <td< td=""><td>NO</td></td<>	NO
		OF DR 1334 1138 1138 1138 1138 1138 1138 1138	
	-)		
	02.2	TLEMEN (15)) (15)) (15)) (15)) (15)) (15) (15)	
		SET G Gma G T 155 SET 1.155 SET 1.155 SET 1.155 SET 1.155 SET 1.155 SET 1.155 SET 1.155 SET 1.155 SET 1.155 SE 1.155 SE 1.155 SE 1.155 SE 1.155 SE 1.155 SE 1.155 SE 1.155 SE 1.155 SE 1.155 SE 1.155 SE 1.155 SE 1.155 SE 1.155 SE 1.155 SE 1.135 SE 1.2355 SE	
	*	ed nee ed	
		Total (linduci Induci Subside 2.1 Induci 0.05 0.065 0.000	
	ш	Volumetric Strain (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	
	rs) D, ASCE	N N (1690)C5	
DENCE	, editor No. 10	Post FC Adj 3.8 8.4 4.2 3.3 8.4 4.2 3.3 8.4 4.2 3.3 4.0 4.0 4.0 4.2 4.2 3.3 8.4 4.2 3.3 8.4 4.2 3.3 8.4 4.2 3.3 8.4 4.2 3.3 8.4 4.2 3.3 8.4 4.2 3.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
D SUBSI	d & Idriss Vol 127 NSCE	Total (ft) Iquefied 11 11 11 11 11 11 11 11 11 11 11 11 12 130 145 145 146 147 148 149 151 153 148 154 154 154 154 154 154 154 154 154 154 154 155 156 157 158 158 158 158 158 158 158 158 158 158 158 158 <	
GROUN	od (You ber 2001 , No.8, <i>A</i>	M 715 11 11 11 11 11 11 11 11 11 11 11 11 1	
DUCED	p meth E), Octo Vol 113	Requiring the second se	
AND IND uthwest	orksho g (JGEE , JGEE,	Market Ma	
VTIAL # ems So	CEER w gineering (1987)	Mini Sand Sand 1.1600.05 33.8 34.1 1.160.05 33.8 34.1 1.160.05 33.2 1.171.1 49.3 49.3 49.3 49.3 49.3 49.3 49.3 49.3	
POTEN th Syste	1998 NC ntal Eng nd Seed	0 0.0 0 0.1 0 0.13 0 0.13	
CTION	996 & 1 ivirome latsu ar 124, No	・ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
QUEFA	using 1 and En n Tokirr E, Vol	Acceler 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.	
S OF LI r, PE, 0	alysis I chnical sis fror el, JGE	Per 1200 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	
IALYSI Stringe	tion An f Geote ht Analy by Prad	C A C A C A C A C A C A C A C A C A C A	
CAL AN	quefact urnal of ttlemer	for the second s	
MPIRIC by She	ds: Lic Jo No Mo	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	
FOR E d 2006	Method	88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
SHEET		CTION NSD (C= CTION (rec) (C= C) (rec) (C= C) (rec) (r	
READS		200RRE tition to lo to l	
- A SP		ALUE Correct Drive and the correct Drive and the correct Correct Call Drive Call Drive C	
2.3.XLS	s, –	PTN V/ Energy V/ B B B Pole Lin B C C C C C C C C C C C C C C C C C C	
UEFY-v	<mark>locatable</mark> a Set:	::: San F F San F F F San F F F F F F F F F F F F F F F F F F F	
LIQ	H.S. Re 02 9 Dat	MATION 7.5 Baref. Urorable Control 1	
	ueneme 13277-0(1/12/201	R R R R R R R R R R R R R R R R R R R	
	No: 30 No: 30 ate: 12 ng: B-	QUAKK Ude 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Proje Job J Da Borij	EARTH Magnit PG/ N Calc G' Calc G' Calc G' Calc G' T.0 115.0 115.0 115.0 115.0 115.0 115.0 115.0 115.0 115.0 115.0 115.0 115.0 115.0 5.0 115.0 5.0 115.0 5.0 115.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	

VSTRUCTION

EARTH SYSTEMS - EVALUATION OF LIQUEFACTION POTENTIAL AND INDUCED SUBSIDENCE

Job Number: 303277-002 Job Name: Hueneme HS Relocatables Boring Number: B-1 Date: December 11, 2019 Calculated By: A. Mazzei

Prediction of Liquefaction Induced Lateral Spreading with Ground Slope Conditions

20.2020 - BID SE (Youd, Hansen and Bartlett, 2002) Based on Data Published in the ASCE Journal of Geotechnicial and Geoenvironmental Engineering December 2002

Variables Used in Calculation Defined

Earthquake Magnitude (M) Horizontal Distance to Nearest Seismic Energy Source, km (R) Percent Slope (S) Cumulative Thickness in Meters of Saturated Cohesionless Sediments with SPT (N1)60 Values <= 15 (T15) Average Fines Content in Percent (F15) Mean Grain size in milimeters (D5015) $Log D_{H} = -16.213 + 1.532 M - 1.406 Log (R + 10^{(0.89M - 5.64)}) - 0.012 R + 0.338 Log S + 0.540 Log T_{15} + 3.413 Log (100 - F_{15}) - 0.795 Log (D50_{15} + 0.1 mm))$

Requirements and Limitations Used to Develop this Model

Soils must be Liquefiable

Saturated Cohesionless Sediments with SPT (N1)60 less than 15

Earthquake Magnitude (M) must be between 6 and 8

Percent Slope (S) must be between 0.1% and 6%

Cumulative Thickness (T15) must be between 1 and 15 meters

Depth to top of Liquefied layer must be between 1 and 10 meters

Distance to Fault Rupture (Req) must be determined using Figure 10 if soft soils are present.

F₁₅ and D50₁₅ must be within bounds shown in Fig. 5.

If R or R_{eq} < 0.5 km use 0.5; otherwise use R or R_{eq} .

	-
Input Values	
M = 6.99]
R = 12.11	km
S = 0.29	%
$T_{15} = 0.9$	m
F15 = 20	%
$D50_{15} = 0.55$	mm

Horizontal Ground Displacement in meters $(D_{H}) = 0.13$ Horizontal Ground Displacement in feet $(D_H) = 0.4$

to "otherwise", c) soft rock and hard rock site factors were set to

"otherwise", which implies a stiff soil site.